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identify the most capable students, while also support-
ing participating students in further engaging in science 
and developing science-related abilities (e.g., Abernathy 
& Vineyard, 2001; Campbell et al., 2000). Quite often, 
however, science competitions are regarded as tending 
to perpetuate cognitive elitism, exclusivity, and selec-
tiveness since they are seen to primarily address intel-
lectually gifted students. It remains an objective fact 
that a crux of science competitions is the identification 
of students demonstrating the highest levels of domain-
specific cognitive abilities. However, another central 
aim of science competitions is the promotion of all par-
ticipating students, not just the fraction of exceptionally 
capable students (e.g., Petersen et al., 2017). Currently, 

Introduction
To enable students to realize their full potential, it is 
imperative to provide learning opportunities tailored to 
the students’ individual needs (e.g., Smale-Jacobse et al., 
2019; U.S. Department of Education, 2013). For students 
with a strong science affinity, science competitions rep-
resent such a learning opportunity. Science competitions 
challenge students with domain-specific problems to 
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science competition managements are actively striv-
ing to recalibrate the widespread perception of science 
competitions as elitist events by actively addressing and 
supporting a broader student population beyond just the 
ambit of exceptionally capable students (e.g., Blanken-
burg et al., 2016; Science Olympiad Inc., 2023). Clearly, 
this endeavour must go beyond merely increasing the 
overall number of participating students. In practice, it 
is of importance that the competition-related efforts of 
all participating students are recognized and valued (e.g., 
Avraamidou, 2020). Overall, contemporary science com-
petitions must particularly align two partly contradictory 
intentions: (1) identifying students demonstrating the 
highest levels of domain-specific cognitive abilities while 
also (2) recognizing and valuing the efforts of all partici-
pating students.

A large proportion of science competitions consist of 
multiple rounds, each progressively more challenging, 
to identify the most capable students. Those partici-
pants with the most developed domain-specific cognitive 
abilities ought to succeed in a specific round and hence 
advance to the subsequent round. Succeeding at a spe-
cific competition round can be regarded as a form of 
recognition, i.e., successful participants recognize them-
selves as a competent science person (e.g., Archer et al., 
2022) and the competition values their efforts by offer-
ing the opportunity to further engage in the competition. 
While the purpose of the higher competition rounds is 
in particular to identify the most capable participants, 
the entry rounds of such multi-round science compe-
titions need closer examination. Typically, such entry 
rounds aim to encompass a broad range of students. 
Specifically, there might be engaged and motivated aver-
age-ability students who participate and put great effort 
into the competition. We argue that such students who 
exhibit beneficial affective attributes (e.g., positive values 
assigned to the competition, robust self-efficacy beliefs) 
but lack highly developed cognitive abilities ought to 
have a reasonable chance of success in the competition’s 
entry round, as a form of recognizing and valuing their 
efforts. In practice, however, empirical evidence concern-
ing the extent to which science competitions actually (1) 
successively identify the highest-ability students over the 
entire course of the competition, while (2) particularly 
recognizing and valuing the efforts of engaged and moti-
vated average-ability students in the entry round remains 
somewhat scarce. Given the generally substantial govern-
mental funding of science competitions (e.g., Eremin & 
Gladilin, 2013; European Commission, 2023), a rigorous 
evaluation of whether science competitions indeed meet 
these intentions is essential for the continued develop-
ment of science competitions as learning opportunities 
for a broad range of interested students.

An understanding of the extent to which science com-
petitions succeed in both the outlined intentions can be 
achieved by investigating the relative influence of specific 
affective and cognitive variables on participants’ success 
(i.e., advancement to the next round) in the entry and 
subsequent competition rounds. If a science competition 
inherently succeeds in recognizing and valuing the efforts 
of engaged and motivated students, affective variables 
(e.g., values assigned to the competition) ought to have 
a notable influence on success in a competition’s entry 
round. If a science competition also succeeds in identi-
fying the most capable students, a shift between the first 
and subsequent competition rounds should be observed 
in the sense that (domain-specific) cognitive variables 
become the main driver for success. In short, a better 
understanding of what contributes to success in the dif-
ferent rounds of science competitions is required. Prior 
research (e.g., Stang et al., 2014; Urhahne et al., 2012) has 
started to provide a picture of which variables contribute 
to success in science competitions. While these studies 
mainly focused on affective variables, domain-specific 
cognitive variables can be expected to be particularly 
predictive of success due to the domain-specific prob-
lem solving demands of science competitions. Addition-
ally, most studies generally focused on students’ success 
in single competition rounds only. This way, it remains 
unclear how the relative role of affective and cognitive 
variables changes from the entry to subsequent com-
petition rounds, which is– in theory– to be expected if 
science competitions succeed in their endeavors. Taken 
together, an in-depth examination of science competi-
tions that uncovers the relative influence of both affective 
and cognitive variables including domain-specific cogni-
tive abilities on participants’ success in the entry and sub-
sequent competition rounds is still pending.

The central aim of the present study was to examine 
the relative influence of affective and cognitive variables 
including domain-specific cognitive abilities on suc-
cess (i.e., advancement) in the first and second round of 
the German Physics Olympiad– a multi-round science 
competition for secondary school students (Petersen & 
Wulff, 2017). By examining what contributes to success 
in the first and second round of the Physics Olympiad, 
we can understand to what extent the Physics Olympiad 
succeeds in (1) identifying the students demonstrating 
the highest levels of domain-specific cognitive abilities 
over the first two competition rounds while also (2) rec-
ognizing and valuing the efforts of engaged and moti-
vated average-ability students in the entry round.1 These 

1 The term “success” relates to two different aspects. Given its recurrent use 
in the manuscript, we want to clarify that we differentiate between (1) suc-
cess of the Physics Olympiad as an institution in meeting its outlined inten-
tions and (2) success of an individual student in the Physics Olympiad. More 
precisely, we normatively consider a student successful in a specific round of 
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findings allow implications on how to improve science 
competitions and contribute to the continued further 
development of science competitions.

Theoretical background
The PhysicsOlympiad as a science competition
The national Physics Olympiad in Germany is a science 
competition for secondary school students that consists 
of four successive rounds that progressively reduce the 
number of participants, ultimately revealing the top five 
students. These top achievers are then invited to repre-
sent Germany at the International Physics Olympiad.

In the first round of the German Physics Olympiad, 
approximately 900 secondary school students volun-
tarily participate by handing in solutions for the com-
petition tasks. These tasks mainly address standard 
secondary school physics topics and are solved individu-
ally as homework over a period of about five months. 
Participants succeed in this first competition round and 
advance to the second round if their scores on the sub-
mitted solutions exceed a predefined threshold. On one 
hand, the competition intends that the most capable stu-
dents succeed and advance to the second round. On the 
other hand, it is also intended that the efforts of engaged 
and motivated average-ability students are recognized 
and valued (Petersen & Wulff, 2017). The basic structure 
of the entry round lays the foundation for this intention 
to be met. More precisely, not only a predefined num-
ber of students advances to the next round. This means 
that engaged and motivated average-ability students have 
a reasonable chance to be successful in the first round 
regardless of how many exceptional capable students also 
advance. The fact that the entry round consists of home-
work tasks also aligns with the outlined intention as affec-
tive student characteristics such as values, self-efficacy 
beliefs and positive external influences can push a stu-
dent to engage with the competition tasks over a longer 
period of time, potentially increasing the student’s prob-
ability of success. Generally, about 50–70% of the partici-
pating students in the first round are then invited to take 
part in the second round, which consists of tasks that are 
tackled by the students at home or at school. The tasks of 
the second and advanced rounds require physics knowl-
edge and abilities exceeding what is typically addressed in 
regular school curricula. Usually, only half of the quali-
fied students hand in their second round solutions due 
to the difficulty of the tasks and time constraints in solv-
ing them. Of those, approximately the top 50 students 
are then invited to the third round, in which participants 
meet each other for the first time in a one-week camp at a 
research institute. The reason that only a fixed number of 

the competition if the student advances to the subsequent round, irrespec-
tive of this student’s individual objectives regarding the competition.

students advance is mainly financial (participation is paid 
in full by the competition, not the students), however, 
this also aligns with the intention of science competitions 
to identify the most capable students. Besides theoretical 
and practical examinations, students are offered oppor-
tunities to participate in seminars, excursions, and talks 
to further develop their motivation and abilities. About 
15 of the best students are then invited to the fourth and 
final competition round whose structure is similar to that 
of the third round. Finally, the top five students of the 
fourth round are selected to participate in the Interna-
tional Physics Olympiad. With its multi-round structure 
and substantial experimental parts in its higher competi-
tion rounds, the German Physics Olympiad can be con-
sidered largely prototypical among Physics Olympiads 
worldwide (see Petersen & Wulff, 2017).

Literature review
Careers of science competition participants
Research on science competitions has extensively inves-
tigated how participation in science competitions influ-
ences future careers of participating students. Studies by 
Resch (2013) and Smith et al. (2021) revealed that former 
science competition participants believed that their par-
ticipation in the competition had positively influenced 
their academic and career trajectories. Similarly, Miller et 
al. (2018) found that, compared to their peers, students 
who participated in STEM competitions were more likely 
to engage in a science career, even when controlling for 
prior STEM interest. Moreover, successful participants 
in science competitions, i.e., those who performed best 
at a national level, were found far more likely to perform 
exceptionally well during their studies and career (e.g., 
Campbell, 1996; Campbell & Walberg, 2011).

Characteristics of successful participants
The most successful science competition participants, 
i.e., those students who advanced to the highest rounds 
in multi-round science competitions, generally engaged 
in science careers and performed notably above average 
in their careers. This apparent association appears self-
evident taking into account that specific student char-
acteristics can be considered the common cause of both 
success in the competition as well as subsequent career 
performance. Therefore, researchers strived to establish 
an enhanced understanding of successful participants’ 
characteristics, particularly focusing on affective vari-
ables. An expectable finding of these studies consisted of 
successful participants being highly interested in science 
and in learning about science (Forrester, 2010; Höffler et 
al., 2019). A retrospective study by Verna and Feng (2002) 
showed that successful participants generally described 
themselves as hard-working and being self-disciplined, 
which these participants considered an important factor 
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of their success. Accordingly, Campbell and Feng (2010) 
found that less successful participants were often char-
acterized by a lack of motivation. Successful participants 
were also found to have a high self-concept of ability 
(Campbell, 1996). This is in accordance with findings of 
Steegh et al. (2021) who found that the least successful 
participants in the first round of the German Chemistry 
Olympiad had the lowest levels of self-efficacy compared 
to other, more successful participants.

Surveys with former participants revealed that suc-
cessful participants generally came from families with 
conducive home atmospheres, e.g., their family mem-
bers also showed interest in science and supported the 
students’ interests (Campbell & Feng, 2010; Campbell & 
O’Connor-Petruso, 2008; Verna & Feng, 2002). Steegh 
et al. (2021) found that the most successful participants 
in the first round of the German Chemistry Olympiad 
had experienced the most support from their parents 
amongst all participants. Moreover, former participants 
of the German Physics Olympiad attributed a positive 
influence to their parental home and school (i.e., teacher 
support, influence of peers; Lind & Friege, 2001). Addi-
tionally, successful participants were found to often per-
ceive regular school classes as boring (Verna & Feng, 
2002), suggesting that these students were under-chal-
lenged by regular schooling.

Next to their effort, successful participants in science 
competitions generally considered their cognitive abilities 
as important for their success (Tirri, 2010; Verna & Feng, 
2002). Cognitive abilities can be distinguished in general 
cognitive abilities and domain-specific cognitive abilities. 
General cognitive abilities refer to more basic abilities 
(e.g., verbal, quantitative, figural abilities) that are con-
sidered largely independent of a domain or subject area 
(Beauducel & Kersting, 2002). They are generally assessed 
using measures of intelligence such as IQ tests. One may 
expect that more successful science competition partici-
pants are characterized by higher levels of general cogni-
tive abilities, although research findings are inconsistent 
in this regard: On one hand, Campbell (1996) found that 
more successful science competition participants had on 
average excellent school grades (notably not only in sci-
ence subjects), which may be indicative of highly devel-
oped general cognitive abilities. On the other hand, Lind 
and Friege (2001) investigated general cognitive abili-
ties of participants in the prefinal and final round of the 
German Physics Olympiad and found that they were 
not characterized by particularly high levels of general 
cognitive abilities, instead they had average abilities. In 
contrast to general cognitive abilities, domain-specific 
cognitive abilities are tailored to a specific domain or 
area, developed through practice and training, lead-
ing to an increased performance within that domain or 
area while potentially having limited applicability beyond 

it (e.g., Ericsson, 2018). The high domain-specific prob-
lem solving demands of science competitions imply that 
more successful participants ought to be characterized 
by well-developed domain-specific cognitive abilities 
which involves profound domain knowledge. Specifically, 
Campbell and O’Connar-Petruso (2008) reported that 
successful participants’ levels of domain knowledge were 
far beyond ordinary school knowledge. Moreover, gen-
eral cognitive abilities were found to predict the initial 
acquisition of expertise, i.e., acquisition of domain-spe-
cific cognitive abilities (Schmidt & Hunter, 2004). Hence, 
general cognitive abilities matter at the start of expertise 
development while their role diminishes with increasing 
expertise and domain-specific cognitive abilities become 
increasingly important (Ackerman, 1992; Weinert, 2001). 
In the entry round of science competitions, participants 
will likely be at different stages in their expertise develop-
ment. Participants who are at the start of their expertise 
development may compensate their lack of domain-spe-
cific cognitive abilities by well-developed general cogni-
tive abilities. They may therefore still be successful in the 
first round in which problems typically require a lower 
level of expertise. In contrast, participants in advanced 
competition rounds are expected to have developed com-
paratively high levels of expertise so that their outstand-
ing performance is mostly explained by domain-specific 
cognitive abilities and only to a much lesser extent by 
their general cognitive abilities.

Predictors of success
As a result of the plethora of findings on what charac-
terizes successful participants in science competitions, 
research began to increasingly address the question of 
what actually determines success in such competitions. 
Thus, research aimed at determining those character-
istics of participants that can be empirically shown to 
increase the probability of experiencing success in a sci-
ence competition. These specific characteristics are gen-
erally referred to as predictors of success.

At this point, we place a focus on the studies con-
ducted by Urhahne et al. (2012) and Stang et al. (2014) 
while being aware that further research on predictors of 
success exists (e.g., Chang & Lin, 2017; Czerniak, 1996; 
Köhler, 2017). Urhahne et al. (2012) and Stang et al. 
(2014) adapted the rather broad expectancy-value model 
of achievement motivation (e.g., Eccles & Wigfield, 
2002) to the context of science competitions (see Fig. 1). 
Urhahne et al. (2012) and Stang et al. (2014) assessed 
numerous variables from the distinct categories of the 
adapted expectancy-value model in the German Chem-
istry and Biology Olympiad. Since they were interested in 
the total effects of selected predictor variables on perfor-
mance in the prefinal round in both competitions, they 
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decided to widely ignore the causal structure implied by 
the expectancy-value model within their analyses.

The underlying idea of their adapted version of the 
expectancy-value model (see Fig. 1) is that science com-
petition participants’ expectancy of success and values 
assigned to the competition directly influence their perfor-
mance in the competition. In their model, expectancy of 
success refers to a student’s belief or perception regard-
ing the likelihood of achieving a desired goal which is– in 
this case– success in the competition. Participants’ values 
assigned to the competition can be expected to influence 
performance in the competition as value beliefs relate 
to increased efforts (Guo et al., 2016) generally lead-
ing to increased performance. In the model, this value 
construct is regarded as consisting of four components: 
Intrinsic value describes to what extent one enjoys par-
ticipating in the competition combined with one’s inter-
est for it (Wang & Degol, 2013). Attainment value reflects 
the subjective importance of performing well in the com-
petition (Wille et al., 2020). Utility value considers how 
useful the competition is for the fulfillment of future 
goals (Shechter et al., 2011). The final component cost 
subsumes the set of all drawbacks regarding engaging in 

the competition such as performance anxiety, fear of fail-
ure, and expenditure of time (Wigfield & Eccles, 2009).

The two outlined core constructs (i.e., expectancy of 
success and values assigned to the competition) depend– 
according to the model– on various other variables 
that are incorporated within the category self-schemas, 
goals, motives, and emotions. One variable from this 
category that has been empirically shown to predict sci-
ence achievement in general (Ferla et al., 2009; Jansen 
et al., 2015; Parker et al., 2014) and success in science 
competitions in particular (Steegh et al., 2021) is self-
efficacy. Self-efficacy represents an individual’s beliefs of 
being able to successfully perform the necessary actions 
to reach an anticipated outcome (Bandura, 1977, 1997). 
While expectancy of success is about the anticipation of 
positive outcomes, self-efficacy is about one’s own beliefs 
of practically achieving those outcomes, i.e., both con-
structs differ in their focus.

According to the model, variables in the self-schemas, 
goals, motives, and emotions category are in turn depen-
dent on miscellaneous other variables that are subsumed 
in the three categories external influences, person char-
acteristics, and prior achievements. Within the category 

Fig. 1 Expectancy-value model (Eccles et al., 1983) adapted to the context of science competitions
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external influences students’ perceived social support 
from their parents, teachers, and peers was shown to 
have a positive effect on achievement outcomes in sci-
ence education (Cirik, 2015; Ganotice & King, 2014) 
and also in science competitions (e.g., Campbell & 
Feng, 2010; Lind & Friege, 2001; Steegh et al., 2021). 
The category person characteristics includes (among 
others) general cognitive abilities, however, we argue 
that domain-specific cognitive abilities should also be 
included in this category due to their outlined impor-
tance in science competitions. Specifically, participants 
in the first round of a science competition will likely be 
at different stages in their expertise development which 
is why both general and domain-specific cognitive abili-
ties might be of importance. Problem solving ability 
represents such a domain-specific cognitive ability.It is 
regarded as the ability to successfully apply conceptual, 
conditional, and procedural domain knowledge when 
dealing with domain-specific problems (Leonard et al., 
1996). The category prior achievements includes predic-
tors such as participation or achievements in former sci-
ence competitions, previous awards, and science grades. 
We argue, however, that using prior achievements to pre-
dict future achievements does not actually contribute to 
a deeper understanding of which student characteristics 
actually explain success in science competitions because 
both prior and future achievement can be presumed to 
have common causes that actually influence success.

Taken together, their version of the expectancy-value 
model allowed Urhahne et al. (2012) and Stang et al. 
(2014) to position a wide range of possible predictors 
of success in science competitions within a single and 
mature theoretical framework that guided their analyses. 
In the first step of their analyses, both studies compared 
successful and unsuccessful participants in the prefinal 
round (i.e., those who advanced and those who did not 
advance) based on the pool of assessed variables. As a 
second step, binary logistic regressions were performed 
using all significant variables from the first step as predic-
tors for success, i.e., for predicting advancement from the 
prefinal to the final round in both competitions. Among 
the wide range of variables under investigation, cognitive 
variables, however, played a minor role as only nonver-
bal general cognitive abilities (e.g., visual sequencing and 
pattern recognition abilities) were considered. Overall, 
Urhahne et al. (2012) found previous participation in 
the competition as a significant predictor of success in 
the Chemistry Olympiad while Stang et al. (2014) found 
expectancy of success to be a significant predictor of suc-
cess in the Chemistry Olympiad and perceived boredom 
in biology classes to be significantly predictive for success 
in the Biology Olympiad.

The present study
Previous research has started to identify predictors of 
success in science competitions (Urhahne et al., 2012; 
Stang et al., 2014). This research, however, has almost 
exclusively focused on affective variables and general cog-
nitive abilities as predictors, and has typically investigated 
only a single competition round of multi-round compe-
titions. Specifically, the role of domain-specific cogni-
tive abilities remains underexplored. In consequence, 
little is known about the relative importance of affective 
variables, general cognitive abilities, and domain-spe-
cific cognitive abilities as predictors of success. Lastly, 
although the intended focus of science competitions gen-
erally changes from entry rounds to advanced rounds 
from recognizing and valuing the efforts of engaged and 
motivated students to identifying the students demon-
strating the highest levels of domain-specific abilities, 
research has not addressed to what extent this change of 
focus corresponds to a change in the relative importance 
of predictors of success. More precisely, if a science com-
petition meets the intention of recognizing and valuing 
the efforts of engaged and motivated students, affective 
variables (in particular values assigned to the competi-
tion and self-efficacy) ought to have a notable influence 
on success in the entry round of the competition. If a sci-
ence competition also meets the intention of identifying 
the most capable students, we expect to see an observ-
able shift between the first and subsequent competition 
rounds in the sense that (domain-specific) cognitive 
variables become the main driver for success. Thus, in 
an attempt to better understand what contributes to suc-
cess in science competitions, we investigated expectancy 
of success, values assigned to the competition, physics self-
efficacy, and social support as affective variables and gen-
eral cognitive abilities and physics problem solving ability 
as cognitive variables as predictors of success in the Ger-
man Physics Olympiad. Specifically, we asked the follow-
ing research question (see also Fig. 2):

To what extent do both affective and cognitive variables 
influence the probability of success (i.e., advancement) 
in the first and second round of the German Physics 
Olympiad?

Method
Data collection
This study is part of a larger research project (effects of 
student science competitions, WinnerS) which, among 
other things, aimed to examine predictors of success and 
failure in selected science competitions including the 
German Biology, Chemistry, and Physics Olympiad. This 
study primarily relies and focusses on data of the Physics 
Olympiad.

All students who registered for the first round of one of 
the above competitions including the Physics Olympiad 
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received an invitation to voluntarily participate in the 
study, which consisted of online questionnaires. The 
study’s first questionnaire contained general questions 
(age, grade, gender, school type) and instruments mea-
suring affective variables. Students had the chance to 
fill out this first questionnaire until they were informed 
whether they had advanced to the second competition 
round. Afterwards, a second questionnaire was unlocked 
for all students who had participated in the first ques-
tionnaire, independent of their success in the first com-
petition round. This second questionnaire focused on 
measuring cognitive variables. We refrained from assess-
ing both affective and cognitive variables at the same 
time to prevent participants from terminating the ques-
tionnaire before completing it due to massive overload.

Sample
Our study sample consisted of 136 students who par-
ticipated in the German Physics Olympiad and filled out 
both the first and the second questionnaire. Of these stu-
dents, 96.3% attended secondary school academic track 
(Gymnasium). The majority of students in our sample 
were in 10th (20%), 11th (31%), and 12th grade (43%), 
while the remaining students were in 8th, 9th or 13th 
grade (three, two, and three students, resp.).

The selective design of the competition ensured that 
only a subgroup of participants could advance to the 
next round. This naturally decreasing number of stu-
dents reaching the next competition round was also 
observed in our sample. A comparison between the com-
plete Physics Olympiad population and our study sample 
with regard to the number of students, their age, and the 

gender ratio in each of the four competition rounds can 
be found in Table 1. This comparison indicates that our 
sample can be considered representative of all Physics 
Olympiad participants in terms of age and gender ratio 
up to and including the second competition round.

Instruments
Affective predictor variables
The following instruments measured affective variables 
and participants were asked to specify their agreement to 
given statements on 4-point Likert scales ranging from “I 
completely disagree” (1) to “I completely agree” (4). We 
decided for an even-numbered Likert scale to prevent 
possible mid-point bias (Garland, 1991).

Expectancy of success. This construct was measured 
with the four items “I believe that I will be successful in 

Table 1 Comparison between the Physics Olympiad population 
and our study sample for all four competition rounds

Round 1 Round 2 Round 3 Round 4
Physics Olympiad 
population
Number of students 931 406 53 15
Mean age (SD) 16.3 (1.1) 16.3 (1.0) 16.7 (0.8) 16.5 (0.8)
Gender ratio (male/
female)

0.72/0.28 0.73/0.27 0.89/0.11 0.93/0.07

Study sample
Number of students 136 77 14 3
Mean age (SD) 16.2 (1.1) 16.3 (1.0) 16.5 (0.5) 16.3 (0.6)
Gender ratio (male/
female)

0.70/0.30 0.74/0.26 0.79/0.21 0.67/0.33

Note All participants in the competition and therefore in our sample identified 
as either male or female

Fig. 2 Theoretical model underlying the research question
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the Physics Olympiad”, “I imagine that I will have prob-
lems learning what I have to in the Physics Olympiad”, 
“I expect to do better than many other Physics Olym-
piad participants”, and “I think I can acquire the knowl-
edge I need for the Physics Olympiad”. These items were 
selected from scales by both Eccles and Wigfield (1995) 
and Lykkegaard and Ulriksen (2016) and adapted in order 
to relate to the Physics Olympiad. As the original scales 
relate to mathematics and STEM study programs, we do 
not expect the adaptions to have any influence on indi-
vidual item validity. Moreover, internal consistency of the 
scale in terms of Cronbach’s alpha as an estimate of reli-
ability proved acceptable (α = 0.71).

Values assigned to the competition. To measure this 
construct, we used the scale developed by Lykkegaard 
and Ulriksen (2016). Specifically, we decided to use a sin-
gle item to measure each of the four existing value com-
ponents for test-economic reasons. The wording of the 
four items was adapted to conform to the Physics Olym-
piad. The used items read: “I get involved in the Physics 
Olympiad because I find it very interesting” (intrinsic 
value), “It means a lot to me to be good in the Physics 
Olympiad” (attainment value), “I expect that what I will 
learn in the Physics Olympiad will also be beneficial in 
my everyday life” (utility value), and “It is important for 
me to get involved in the Physics Olympiad even if I will 
have less time for family, friends and leisure activities” 
(cost). Again, as the original scale relates to STEM study 
programs in general, we do not expect our adaptions to 
impact individual item validity. Moreover, internal con-
sistency of the scale proved acceptable (α = 0.75).

Self-efficacy. Physics self-efficacy was measured with 
an adapted version of the complete mathematics self-
efficacy scale from the German national questionnaire of 
the PISA studies (PISA-Konsortium Deutschland, 2006). 
The original scale consists of four items that were all 
adapted by replacing the word “mathematics” with “phys-
ics” which we do not expect to have any impact on con-
struct validity. The used items read: “I am confident to 
understand even the most difficult material in physics”, “I 
am convinced that I can solve even the most complicated 
physics tasks”, “I am convinced that I can always achieve 
very good results in physics”, and “I am convinced that I 
can learn and master all abilities needed to solve physics 
problems.” The internal consistency of the scale proved 
good (α = 0.85).

Social support. To measure participants’ perceived 
social support with regard to physics and the Physics 
Olympiad, we combined the ‘support by parents’, ‘support 
by teachers’, and ‘support by peers’ scales developed by 
Wulff et al. (2018). Three items from each scale were used 
whereby items have a similar structure across the original 
scales: “My parents/teacher/friends supported me very 
much regarding the Physics Olympiad”, “I can turn to my 

parents/teacher/friends if I have problems in or questions 
about physics”, and “My parents/teacher/friends actively 
support(s) me in my physics engagement.” The inter-
nal consistency of the combined scale was acceptable 
(α =.72).

Cognitive predictor variables
General cognitive abilities. In order to assess general cog-
nitive abilities, we used a subscale of a cognitive abili-
ties test developed by Heller and Perleth (2007) in which 
students receive different items according to their grade 
level. Specifically, we chose the subscale for quantitative 
cognitive abilities as quantitative abilities are of central 
importance in science (e.g., Wai et al., 2009) and in par-
ticular in the Physics Olympiad (Treiber et al., 2023). A 
sample item from this subscale reads “Which quantity is 
bigger: q3 or q4 if q is real and a positive proper fraction?”

Physics problem solving ability as a domain-specific 
ability. Existing instruments for assessing this ability (e.g., 
Brandenburger, 2016; Coleman & Shore, 1991) were not 
designed for particularly capable students as those that 
can be found in the Physics Olympiad, and are therefore 
at risk of exhibiting ceiling effects. Hence, we designed a 
new instrument to measure physics problem solving abil-
ity focussing on students’ strategies for solving a given 
problem (to find the complete instrument, see Wulff et 
al., 2023). Such strategies entail the concepts to solve 
a given problem (conceptual knowledge), a justifica-
tion for why these concepts can be applied (conditional 
knowledge), and procedures by which these concepts are 
applied (procedural knowledge). The designed instru-
ment requires students to describe in written form and 
in full sentences how they would solve four well-defined 
physics problems without explicitly solving them. A 
theory-based coding rubric distinguishing the four cat-
egories concept, context, execution, and detail was used 
for scoring students’ responses to each problem. All 
responses were completely double coded by two rat-
ers. Initial agreements in the four categories measured 
through Cohen’s linearly weighted kappa (Warrens, 
2012) were substantial to almost perfect (κconcept = 0.81, 
κcontext = 0.85, κexecution = 0.77, κdetail = 0.79; Landis & Koch, 
1977). In order to further increase the quality of the rat-
ings, disagreements between raters were discussed until a 
consensus was reached.

Success in the competition
Success in a specific competition round was considered 
a dichotomous variable, i.e., a student was successful in a 
specific round if this student advanced to the subsequent 
round and vice versa. This decision on advancement, in 
turn, was based on the scores on participants’ submitted 
solutions in the corresponding round. More specifically, 
participants needed at least 30 of 40 points in the first 
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round in order to advance to the second round, while 
roughly 50 students with the highest scores among all 
second-round participants advanced to the third round.

Analyses
The central aim of this study was to examine the influ-
ence of expectancy of success, values assigned to the com-
petition, self-efficacy, social support, general cognitive 
abilities and physics problem solving ability as affective 
and cognitive predictor variables on advancement in the 
first and second round of the German Physics Olympiad 
(see Fig. 2). More specifically, advancement in a specific 
competition round was regarded as a dichotomous out-
come as it was operationalized by whether a participant 
advanced to the next competition round or not. Taking 
these aspects into account, we applied logistic regression 
analyses as they allow the analysis of the effect of multiple 
independent variables (the aforementioned affective and 
cognitive predictor variables) on a dichotomous outcome 
variable (success in a specific round) by quantifying each 
independent variable’s unique contribution (Stoltzfus, 
2011). To prepare data for these logistic regression anal-
yses, we performed two preliminary analyses: a Rasch 
analysis of the general cognitive abilities data and a mul-
tiple imputation procedure to handle missing data. All 
statistical analyses in this study were conducted using R 
(Version 1.4; R Core Team, 2021).

Rasch analysis of general cognitive abilities data
In contrast to the other instruments used in this study, 
participants did not receive the exact same items in the 
test for general cognitive abilities. Rather, participants 
received a grade level-specific subset of items. Since 
there existed common items between subsets, Rasch 
modelling would allow expressing each participant’s gen-
eral cognitive ability as a score on the same scale irre-
spective of which grade level-specific subset of items was 
answered by a participant. However, this only holds if the 
relevant construct is unidimensional (Boone & Nolte-
meyer, 2017) which should be the case since we have only 
used the subscale for quantitative abilities of the entire 
instrument measuring general cognitive abilities. Thus, in 
order to obtain comparable values representing general 
cognitive abilities across all participants, we performed 
a Rasch analysis using the R package TAM (Robitzsch 
et al., 2021). The basic idea of a Rasch model and anal-
ysis is that the probability of a person correctly solving 
a specific item only depends on the difference between 
the person’s ability score and the specific item’s difficulty 
score. This way, a Rasch analysis constructs ability scores 
which are on the same scale irrespective of the specific 
items answered by the participants (Boone & Nolte-
meyer, 2017; DeMars, 2010).

Before estimating the Rasch model, items that all par-
ticipants answered correctly or incorrectly must be 
removed. Then the model is estimated and the model 
results are inspected in an iterative process, i.e., the 
inspection of model results may lead to the exclusion of 
specific items based on criteria and to a re-estimation 
of the model. Specifically, we focused on three criteria. 
First, each item’s infit value which represents a measure 
of fit between the item and the Rasch model should be 
located between 0.8 and 1.2 (Bond & Fox, 2007). Second, 
we inspected Wright Maps that contrast estimated per-
son ability scores and item difficulty scores in order to 
illustrate whether the set of items covers the whole set 
of abilities of participants (Bond & Fox, 2007). Third, we 
computed the weighted likelihood estimate (WLE) reli-
ability which represents an overall measure of fit between 
the data and the Rasch model and which can be inter-
preted similarly to Cronbach’s alpha (Adams, 2005).

Since only 75 students from our overall sample 
(N = 136) completed the cognitive abilities test, we 
may have obtained unreliable estimators for students’ 
cognitive ability scores due to a too small sample size 
(Neumann, 2014). Hence, to increase sample size for esti-
mation, we included Biology and Chemistry Olympiad 
participants’ test results, which were assessed in the same 
project. This provided us with a total sample of 495 stu-
dents for estimating the Rasch model.

Multiple imputation for missing data
As in other survey-based empirical research, we faced the 
issue of missing data. Specifically, only 75 students from 
our overall sample (N = 136) participated in the test for 
general cognitive abilities. This was likely caused by the 
length of the overall test procedure as the test for general 
cognitive abilities was to be immediately processed after 
the assessment of physics problem solving abilities. In 
order to address this issue, we used multiple imputation 
as a recommended method (Enders, 2010). A common 
criticism is that multiple imputation cannot handle large 
amounts of missingness. However, traditional methods 
such as listwise deletion would generally be inappropri-
ate in such situations as they introduce bias and largely 
reduce statistical power (van Ginkel et al., 2020). More-
over, simulation studies showed that multiple imputation 
can handle even large missing rates (e.g., Grund et al., 
2016; Madley-Dowd et al., 2019).

Multiple imputation is a regression-based procedure 
which consists of three steps (van Ginkel et al., 2020): 
First, multiple complete copies of the incomplete data are 
generated by replacing the missing values with different 
plausible estimates. Second, all of these complete ver-
sions are analysed separately by the intended statistical 
procedure, which will result in slightly varying outcomes 
of the analysis. Third and finally, these slightly varying 
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outcomes are combined into a final result by an appro-
priate statistical procedure which takes into account the 
uncertainty induced by the missing data.

In our study, we used the R package mice (van Buuren 
& Groothuis-Oudshoorn, 2011) to perform this multiple 
imputation procedure while also following recommen-
dations by Zhou and Reiter (2010). That is, we created 
m = 100 complete versions of the incomplete dataset to 
ensure reliable inferences (first step). Technical details 
regarding this step can be found in the Supplementary 
Material (Part B). Moreover, we scaled all predictor vari-
ables in each complete dataset (M = 0, SD = 0.5) to ease 
future interpretation and comparison of results. Logistic 
regressions were then performed on all m = 100 complete 
dataset (second step) and finally all analysis outcomes 
were combined into a final result (third step).

Bayesian logistic regression to answer the research question
In order to investigate the effects of the introduced affec-
tive (expectancy of success, values assigned to the com-
petition, self-efficacy, and social support) and cognitive 
predictor variables (general cognitive abilities and phys-
ics problem solving ability) on the probability of advance-
ment in the first and second round of the German Physics 
Olympiad, we performed two logistic regressions– one 
for each transition between competition rounds. A 
logistic regression model provides us with a regression 
parameter for each predictor variable that describes the 
strength and direction of the influence of that predictor 
variable on an outcome. Hence, in our context, we will 
obtain estimates (in the form of regression parameters) 
that describe the individual influence of the six intro-
duced predictor variables on the probability of advance-
ment in either the first or second round of the Physics 
Olympiad. Such logistic regression models were previ-
ously successfully applied in similar studies (Urhahne et 
al., 2012; Stang et al., 2014). To estimate the regression 
models, we chose the R package brms (Bürkner, 2017) 
which incorporates an efficient way to handle multi-
ple imputed datasets as it uses a Bayesian approach for 
model fitting. Further information regarding the specifi-
cation of our logistic regression models and their estima-
tion can be found in the Supplementary Material (Part 
C).

This Bayesian approach for model fitting does not 
provide us a single estimate for a desired regression 
parameter as in the frequentist approach, but rather a 
probability distribution over all possible values of that 
regression parameter. This distribution is referred to as 
posterior distribution and does not only contain informa-
tion on the most probable value of a regression param-
eter but also its level of uncertainty. More precisely, this 
most probable value of a regression parameter is given 
by the maximum a posteriori (MAP) estimate which 

corresponds to the mode of this parameter’s posterior 
distribution. The MAP estimate can be considered the 
Bayesian counterpart of the traditional point estimate in 
the frequentist approach. The uncertainty of this MAP 
estimate is quantified by the 95% highest posterior den-
sity interval (HPDI) which is the narrowest interval of 
a posterior distribution containing the specified prob-
ability mass (here 95%). The HPDI can be considered 
the Bayesian counterpart of the traditional confidence 
interval in the frequentist approach. In summary, we will 
provide both MAP estimates and their corresponding 
95% HPDIs to describe regression parameters when pre-
senting our results. A reader more interested in Bayesian 
methods may see Kubsch et al. (2021) for an introduction 
in the context of science education research or McElreath 
(2020) for an in-detail treatment of the subject.

Moreover, the posterior distributions of regression 
parameters can be used to compute probabilities of 
advancement to the next competition round based on the 
effects of single predictor variables. This makes it pos-
sible to make exact statements about the extent to which 
a change in a predictor variable influences the probabil-
ity of advancement to the next round. In particular, these 
changes in probability are much easier to interpret than 
concrete values of regression parameters.

Results
Descriptive statistics
Means, standard deviations, and correlations of unscaled 
predictor variables are presented in Table  2. The statis-
tically significant correlations are all positive, have small 
to moderate magnitudes, and occur either between the 
affective variables or between the two cognitive variables.

Preliminary analyses
In order to prepare the general cognitive abilities data 
for further analyses, we performed a Rasch analysis. The 
final Rasch model showed a satisfying fit with accept-
able infit values between 0.8 and 1.2 (Bond & Fox, 2007) 
and a WLE reliability of 0.77. Moreover, the Wright Map 
revealed that the items of the test for general cognitive 
abilities cover the whole range of ability levels of partici-
pants in an acceptable way (see Supplementary Material, 
Part A). Thus, we obtained reliable estimates of partici-
pants’ general cognitive abilities that were used for fur-
ther analyses.

Moreover, we handled missing data by performing 
multiple imputation as a recommended method (Enders, 
2010). Graphical diagnostics using time-series plots 
indicated that the imputation method produced reliable 
estimates to replace missing values (see Supplementary 
Material, Part B).
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Logistic regression analyses to answer the research 
question
The results of the logistic regression analyses for the 
effects of predictor variables on the probability of 
advancement in the first and second competition round 
in the form of MAP estimates and corresponding 95% 
HPDI are shown in Table 3. Complete posterior distribu-
tions of estimated regression parameters can be found in 
the Supplementary Material (Part D).

Moreover, we determined probabilities of advancement 
to the next competition round based on effects of single 
predictor variables (see Fig.  3). The less the depicted 
curves overlap for a particular predictor variable, the 
greater the influence of that variable on success. If, on 
the other hand, the curves overlap almost completely, the 
corresponding predictor variable has almost no influence 
on success.

We found expectancy of success and both cognitive 
variables to have a notable influence on the probability 
of advancement from the first to the second competition 
round. Physics problem solving ability was the stron-
gest predictor of success (MAPPPSA = 1.59), followed 
by expectancy of success and general cognitive abili-
ties with a comparable influence on success (MAPEXSU 
= 0.94, MAPGCAB = 0.91). By examining the left side of 
Fig.  3, we can clearly recognise these strong influences 
on the probability of advancement to the second round. 
A participant with an average value on each predictor 
variable has an average probability of advancement of 
approximately 60%. If, on one hand, an average partici-
pant’s physics problem solving ability increases by one 
standard deviation, this participant’s average probabil-
ity of advancement will increase by about 17%. One the 
other hand, a decrease of one standard deviation would 
result in a decrease of the average probability of advance-
ment by 20%. A similar change of an average participant’s 
expectancy of success or general cognitive abilities would 
change the average probability of advancement by 12% in 
the appropriate directions. Compared to these three vari-
ables, the remaining predictor variables (values assigned 
to the competition, self-efficacy, and social support) 
had a negligible influence on advancement (MAPVACO = 
-0.11, MAPSEEF = 0.02, MAPSOSU = 0.11). This can also 
be observed in Fig. 3, as there is nearly no change in the 
probability of advancement to the second round when 
considering different values of the corresponding predic-
tor variables.

A different picture emerges for advancement from the 
second to third competition round. One notable obser-
vation is that the range of the HPDI has increased com-
pared to those of the first round, which indicates a higher 
uncertainty about regression parameter values. This is 
mainly attributed to the smaller sample size for estima-
tion as there are naturally fewer participants in the sec-
ond round compared to the first round (see Table  1). 
Comparing all MAP estimates, we found self-efficacy 

Table 2 Means, standard deviations, and correlations of unscaled predictor variables
Variables M SD EXSU VACO SEEF SOSU GCAB
Affective variables
Expectancy of success (EXSU) 2.56 0.48
Values assigned to the competition (VACO) 2.86 0.63 0.19*
Self-efficacy (SEEF) 3.32 0.57 0.32*** 0.25**
Social support (SOSU) 2.52 0.52 0.17 0.04 0.01
Cognitive variables
General cognitive abilities (GCAB) 0.65 0.88 0.20 0.01 0.16 − 0.15
Physics problem solving ability (PPSA) 7.57 6.74 0.12 0.15 0.09 0.03 0.38***
Note M = mean; SD = standard deviation

*p ≤.05

**p ≤.01

***p ≤.001. The statistics of the general cognitive abilities data correspond to the Rasch-modelled person abilities

Table 3 Effects of predictor variables on advancement in the 
first and second competition round

Advancement 
from R1 to R2

Advancement 
from R2 to R3

Variables MAP 95% HPDI MAP 95% HPDI
Affective variables
Expectancy of success (EXSU) 0.94 [0.08, 1.83] -0.37 [-1.85, 

1.03]
Values assigned to the competi-
tion (VACO)

-0.11 [-0.91, 0.70] 0.52 [-0.83, 
1.95]

Self-efficacy (SEEF) 0.02 [-0.82, 0.83] 0.97 [-0.64, 
2.70]

Social support (SOSU) 0.11 [-0.67, 0.96] 0.16 [-1.18, 
1.46]

Cognitive variables
General cognitive abilities 
(GCAB)

0.91 [-0.24, 2.15] 0.00 [-1.92, 
2.17]

Physics problem solving ability 
(PPSA)

1.59 [0.47, 2.54] 1.01 [-0.18, 
2.41]

Note R1 = first competition round; R2 = second competition round; R3 = third 
competition round; MAP = maximum a posteriori estimate; 95% HPDI = 95% 
highest posterior density interval
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and values assigned to the competition amongst the 
affective variables and physics problem solving ability 
amongst the cognitive variables to have a notable influ-
ence on the probability of advancement from the second 
to third competition round. In particular, physics prob-
lem solving ability can once more be considered the best 
predictor of success, this time in the second competi-
tion round (MAPPPSA = 1.01). However, self-efficacy is 
nearly as strong a predictor (MAPSEEF = 0.97), while val-
ues assigned to the competition seem to have a moderate 
influence on the probability of success as well (MAPVACO 
= 0.52). Again, by examining the right side of Fig. 3, we 
can observe the effects of these predictors on the proba-
bility of advancement to the next round. First, an average 
participant has an average probability of advancement 
of only 11%, which goes hand in hand with the stronger 
selective character of the second competition round. 
Increasing or decreasing an average participant’s problem 
solving ability by one standard deviation would change 
this participant’s average probability of advancement by 
6% in the appropriate directions. Similar considerations 
for self-efficacy and values assigned to the competition 
result in a change in the probability of advancement by 
5% and 3%, respectively, in the appropriate directions. 
The remaining predictors (expectancy of success, social 

support, and general cognitive abilities) seem to have 
no noticeable influence on the probability of advance-
ment in the second competition round (MAPEXSU = -0.37, 
MAPSOSU = 0.16, MAPGCAB = 0.00) which can also be 
concluded by examining Fig. 3.

Discussion
This study aimed to understand the extent to which the 
Physics Olympiad succeeds in reconciling its intentions 
of (1) identifying the most capable students and (2) rec-
ognizing and valuing the efforts of engaged and moti-
vated average-ability students. For this purpose, the 
present study examined the relative influence of affective 
and cognitive variables including domain-specific cogni-
tive abilities on success in the first and second round of 
the German Physics Olympiad. If the Physics Olympiad 
meets the intention of recognizing and valuing the efforts 
of engaged and motivated students, then affective vari-
ables ought to have a notable influence on success in the 
entry round of the competition. If the Physics Olympiad 
also meets the intention of identifying the most capa-
ble students, then there should be an observable shift 
between the first and subsequent competition rounds 
in the sense that (domain-specific) cognitive variables 
become the main driver for success. More specifically, 

Fig. 3 Probabilities of advancement to the next competition round for different values of predictor variables Note. EXSU = expectancy of success; 
VACO = values assigned to the competition; SEEF = self-efficacy; SOSU = social support; GCAB = general cognitive abilities; PPSA = physics problem solv-
ing ability. Regarding one transition of interest, three differently shaded curves are shown for each predictor variable. The middle curve (transparent) 
represents the probability of advancement to the next round of participants who have an average value on each predictor variable (here average refers 
to the participants of our study). The light grey and dark grey shaded curves correspond to participants who have a low (one standard deviation below 
the average) and high value (one standard deviation above the average) on the corresponding predictor variables, respectively, while all other variables 
are kept at average level
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this study performed logistic regression analyses to 
quantify the relative effects of the predictor variables 
expectancy of success, values assigned to the competition, 
self-efficacy, social support, general cognitive abilities and 
physics problem solving ability on the probability of suc-
cess in the first and second competition round.

Predictors of success
Advancement from the first to second round
We found that certain variables are notably related to an 
increased probability of success in the first competition 
round, i.e., advancing to the second competition round. 
Physics problem solving ability had the most notable 
effect on success in the first competition round. This 
observation aligns with insights from expertise research 
which highlights that domain-specific cognitive abilities 
acquired through deliberate practice and experience sub-
stantially contribute to outstanding performance within 
a given domain (Ericsson, 2018). However, we also found 
general cognitive abilities to play a notable role in the first 
round of the Physics Olympiad. This finding suggests that 
even participants who were in the early stages of their 
expertise development and therefore primarily relied 
on their general cognitive abilities (Lind & Friege, 2001; 
Weinert, 2001) had a reasonable chance of succeeding in 
the first competition round. More precisely, quantitative 
abilities as a specific facet of general cognitive abilities 
were assessed, which is why well-developed quantitative 
abilities seem to be important for success in the entry 
round of the Physics Olympiad, a finding that aligns with 
the conclusions of Treiber et al. (2023).

Participants’ expectancies of success were also found 
to have a notable influence on success. This finding aligns 
with previous research which demonstrated a positive 
correlation between expectancies of success and stu-
dents’ achievements (Guo et al., 2016; Trautwein et al., 
2012), particular in the context of science competitions 
(Stang et al., 2014). However, this finding was somewhat 
predictable considering that participants rated their 
expectancy of success during or after engaging with the 
first round’s tasks. Consequently, these personal ratings 
were specifically linked to these tasks. Hence, this finding 
may be seen as an indicator that participants were partic-
ularly good at predicting their own performance on the 
first round’s tasks.

Among the other affective variables examined (i.e., val-
ues assigned to the competition, self-efficacy, and social 
support), none exhibited a notable influence on success. 
The finding that social support did not have a notable 
effect on success contradicted our initial anticipation. 
We hypothesized results similar to those of Steegh et al. 
(2021) who identified participant profiles in the Chem-
istry Olympiad and found that students in the most 
successful profile received the most parental support. 

Simpkins et al. (2015) found that parental support pre-
dicted adolescents’ science-related self-efficacy and val-
ues which in turn influenced academic success. However, 
our data suggests neither a direct nor an indirect effect 
(mediated through self-efficacy or values assigned to 
the competition) of social support on success since we 
did not find any significant correlation between social 
support and the two possible mediators (see Table  2). 
Although social support seems to play no role in explain-
ing success in the first round of the Physics Olympiad, it 
could still potentially explain the decision to participate 
in the competition in the first place (Czerniak, 1996; 
Verna & Feng, 2002).

Based on our findings, we concluded that the Physics 
Olympiad does not succeed in meeting the intention of 
inherently recognizing and valuing the efforts of engaged 
and motivated average-ability students since neither 
values assigned to the competition nor self-efficacy nor 
social support were found to have a notable influence 
on success in the entry round of the competition. Spe-
cifically, general cognitive abilities and domain-specific 
cognitive abilities in the form of physics problem solving 
abilities were found to increase the probability of suc-
cess in the first competition round the most. Overall, our 
findings indicate that a lack of cognitive abilities cannot 
be compensated by highly developed affective variables. 
Nonetheless, our findings suggest that less developed 
physics problem solving abilities may be compensated 
by well-developed general cognitive abilities– and vice 
versa– as both were found to notably increase the prob-
ability of success in the first round. Taken together, suc-
cess in the first round of the German Physics Olympiad 
requires more than engagement and motivation. It seems 
that already in the first round successful students possess 
highly developed physics problem solving abilities or are 
able to compensate a lack of those domain-specific cogni-
tive abilities by well-developed general cognitive abilities.

Advancement from the second to third round
We also examined the relative influence of affective and 
cognitive variables on success in the second round of the 
Physics Olympiad. This allowed for contrasting the rela-
tive contribution of predictor variables on success and 
compare it to the intended shift of focus from recogniz-
ing and valuing the efforts of engaged and motivated stu-
dents to identifying the most capable students.

In contrast to the findings of the first round, partici-
pants’ expectancy of success had no notable effect on 
success in the second competition round. This finding, 
however, may be a consequence of a methodological 
issue. We assessed participants’ expectancies of success 
during the first competition round using items which 
explicitly addressed a general expectancy of success con-
cerning the competition as a whole, rather than focussing 
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on a specific round. Yet, we suspect that a majority of 
participants based their expectancy beliefs on their expe-
riences in the tasks of the first round. Moreover, tasks 
of the second round differ from those of the first round 
as they are more challenging (Petersen & Wulff, 2017). 
Thus, the estimated effect of participants’ expectancies 
of success on advancement in the second competition 
round must be interpreted with caution.

Participants’ values assigned to the competition were 
found to have no influence on success in the first round, 
but had a notable influence in the second round. As the 
tasks of the second round are more difficult and particu-
larly more time-consuming than tasks of the first round 
(Petersen & Wulff, 2017), participants generally have to 
show more commitment and effort to solve the tasks 
within the given timeframe. Given that value beliefs have 
been established as being related to students’ efforts (Guo 
et al., 2016), this might explain why students’ values con-
tribute notably to success in the more demanding second 
round of the competition.

Self-efficacy, which exhibited no notable influence on 
success in the first round, emerged as the second-stron-
gest predictor of success in the second round. This shift 
could be attributed, once more, to the increased difficulty 
of competition tasks in the second round. Considering 
that physics self-efficacy represents participants’ beliefs 
of being able to understand even the most difficult phys-
ics material and successfully tackle the most challenging 
physics problems (Bandura, 1977, 1997), participants 
possessing high self-efficacy would be more successful in 
the second round when compared to their counterparts 
with lower self-efficacy.

General cognitive abilities were found to have no influ-
ence on success in the second round even though they 
had a notable influence in the first competition round. 
In contrast, physics problem solving ability remained 
the best predictor of success even in the second round. 
The importance of this finding becomes all the more 
clear from a statistical point of view. Those participants 
who advanced to the second round generally had better 
developed problem solving abilities than average par-
ticipants of the first round since problem solving abilities 
were found to be most predictive of success in the first 
round. Therefore, a reduced variance of participants’ 
physics problem solving ability could be expected in the 
second round as participants with less developed phys-
ics problem solving abilities were less likely to advance to 
the second round. Despite this reduced variance, phys-
ics problem solving ability remained the best predictor 
of success in the second round. This highlights that the 
Physics Olympiad seems to identify students with well-
developed general cognitive abilities or problem solving 
abilities in the first round, and students with in particular 

even better developed physics problem solving abilities in 
the second round.

These findings regarding both general cognitive abili-
ties and physics problem solving ability as a physics-
specific ability can be linked to expertise research. The 
notable role of general cognitive abilities in the first 
round may indicate that even participants, who were 
still at an early stage of their expertise development in 
physics (Ericsson, 2018), had a reasonable chance to suc-
ceed in the first and advance to the second competition 
round. It seems that those participants characterized by 
less developed physics-specific abilities were able to com-
pensate this deficit through their well-developed general 
cognitive abilities, however, only in the first round. The 
increased difficulty of the tasks of the second round com-
pared to those of the first round seemed to have had the 
consequence that compensating a lack of physics-specific 
abilities with well-developed general cognitive abilities 
no longer appeared possible. Hence, students who suc-
ceeded in the second round and therefore advanced to 
the third round appeared to be more advanced in their 
expertise development as indicated through generally 
more developed physics problem solving abilities (Lind & 
Friege, 2001; Weinert, 2001).

In sum, it is disputable to what extent the focus of the 
first competition round aligns to the competition’s inten-
tion of recognizing and valuing the efforts of engaged 
and motivated students. The first round appears to iden-
tify students characterized by well-developed general or 
physics-specific cognitive abilities, or both. Engaged and 
motivated students lacking these cognitive prerequisites 
have difficulties coping with the competition’s demands. 
The second round seems to identify participants with 
highly developed problem solving abilities and strong 
beliefs in their own abilities. Hence, the competition 
definitively meets its intention of identifying the most 
capable students, yet it falls short in adequately recog-
nizing and valuing the efforts of engaged and motivated 
average-ability students.

Implications for improving science competitions
The first round of the Physics Olympiad appears to be 
overly challenging in the sense that being engaged and 
motivated alone does not provide participants a rea-
sonable chance to succeed in the entry round of the 
competition. Hence, to effectively meet the intention of 
recognizing and valuing the efforts of engaged and moti-
vated students, one may re-evaluate both the difficulty 
and the types of problems featured in the first round of 
the competition.

Simply reducing the overall difficulty of the first com-
petition round may result in a greater number of engaged 
and motivated average-ability students reaching the sec-
ond competition round, consequently feeling recognized 
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for their efforts. However, it is crucial to ensure that not 
only more participants advance to the second round but 
that those who advance do so because of their engage-
ment and motivation. This necessitates a re-evaluation 
of the types of problems currently employed in the first 
round. Presently, problems heavily rely on the iden-
tification of problem-relevant physics concepts, their 
mathematical representation, and subsequent mathe-
matical computations to derive a solution. One possible 
approach could involve replacing a conventional, well-
defined problem with a more open-ended one, address-
ing socially relevant issues intertwined with physics (e.g., 
“wicked problems”, socioscientific issues, see Ramaley, 
2014; Zeidler & Nichols, 2009, resp.), since these are 
the kind of problems that require effort, engagement, 
and motivation instead of raw physics and mathematics 
abilities.

The Physics Olympiad and similar science competi-
tions could also offer support programs and learning 
resources that facilitate the entry into the competition. 
This way, engaged and motivated students are given an 
opportunity to learn and practise the knowledge and 
abilities that are relevant in the first competition round 
beforehand. Given that physics problem solving abilities 
consistently emerged as the leading predictor of success 
in both the first and second round of the Physics Olym-
piad, we propose the implementation of support pro-
grams and learning resources focussing on enhancing 
this ability prior and during the first and second compe-
tition round. Notably, this approach primes students for 
the competition’s demands and also lays a foundation for 
potential STEM careers in which problem solving abili-
ties are of central importance (Armour-Garb, 2017; Jang, 
2016; Mulvey & Pold, 2020). These support programs or 
resources could explicitly address problem solving strat-
egies (Larkin & Reif, 1979), given their established posi-
tive connection to academic achievement (Binder et al., 
2019). Moreover, these programs and resources could 
elaborate on the process inherent to solving domain-
specific problems. This could be achieved by presenting 
learners with a model of the problem solving process 
(e.g., Polya, 1945; Selçuk & Çalýskan, 2008) encompass-
ing comprehensive instructions for each step of the out-
lined process. In the domain of physics, this approach has 
been found to positively influence the quality of students’ 
problem representations (Huffman, 1997; Savelsbergh et 
al., 1997), their overall problem solving performance and 
their physics achievement (Selçuk & Çalýskan, 2008).

Lastly, we discuss a more direct approach to recog-
nizing and valuing the efforts of motivated and engaged 
students. Currently, students participating in the com-
petition engage with the first-round problems over a 
long period of time alongside their regular school com-
mitments. Ultimately, their physics teachers score their 

solutions and communicate whether a student advances 
to the next round based on the achieved score. Advance-
ment to the next round serves as a form of recognition of 
a student’s efforts. However, if a student does not advance 
to the next round, then the only way of recognizing and 
valuing this student’s efforts is through the teacher who 
scored the student’s solutions. We argue that that it is 
crucial to make these teachers aware that they hold the 
key for recognizing and valuing their students’ efforts 
as only they actually see their efforts in the form of the 
submitted solutions. We therefore propose that teachers 
offer constructive performance feedback based on their 
students’ submitted solutions to provide recognition and 
enable future performance improvements (Ellis et al., 
2006).

Limitations
We had to refrain from statistical analysis of predictors 
determining success in the third and fourth competition 
round of the Physics Olympiad due to too small sample 
sizes for sound statistical analyses. Hence, we were not 
able to present any evidence that the trend of identify-
ing the most capable students continues in the third 
round of the Physics Olympiad. Moreover, our regres-
sion analysis did not consider possible interaction effects 
between variables even though specific combinations of 
predictor variables might be particularly advantageous 
for success in the competition. In light of the number of 
predictors and the larger number of possible interaction 
terms, considering interactions in a regression frame-
work would probably not yield meaningful results given 
the sample size. However, using a more holistic approach 
such as latent profile analysis might unravel interactions 
between predictors in future analyses (Tschisgale et al., 
2024). Lastly, our analysis assumed that predictor vari-
ables were stable over the investigated time period. This 
assumption, however, may not hold as– for example– 
cognitive variables may change due to learning effects. 
Future investigations should therefore assess the relevant 
predictor variables at each competition round for more 
valid conclusions.

Conclusion and future research
Nowadays, science competitions intend to (1) identify 
those students with the highest domain-specific cogni-
tive abilities and (2) recognize and value the efforts of 
engaged and motivated average-ability students. How-
ever, our study’s findings shed light on a nuanced reality. 
The first round of the Physics Olympiad seemingly erects 
a hurdle for students that are engaged and motivated but 
lack sufficient cognitive abilities, thus challenging the 
realization of the second intention. Conversely, the Phys-
ics Olympiad appears to effectively align with its first 
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intention by successfully identifying students with excep-
tional physics-specific abilities.

Building on these insights, we advocate for overthink-
ing the kind of tasks employed in the first competition 
round in order to align the competition with its inten-
tion of recognizing and valuing the efforts of engaged 
and motivated students. Furthermore, we propose the 
integration of support programs within the competition 
framework, with a strategic focus on cultivating problem 
solving abilities. This approach not only readies partici-
pants for the competition’s demands but also nurtures an 
ability essential to potential STEM careers. As a call for 
further investigations, future research should compare 
the situation to other science competitions beyond the 
German Physics Olympiads. This comparative approach 
will enrich our understanding of success in diverse sci-
ence competitions while also contributing to the gener-
alizability of our findings and leading to a far-reaching 
evaluation of whether science competitions worldwide 
meet their stated intentions.
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