Correction to: Transforming standards into classrooms for knowledge-in-use: an effective and coherent project-based learning system

Peng He¹*, Joseph Krajcik¹ and Barbara Schneider²

Correction to: Disciplinary and Interdisciplinary Science Education Research (2023) 5:22
https://doi.org/10.1186/s43031-023-00088-z

In the original publication of this article the reference citations within figure 1 were not visible. The incorrect and correct version of figure 1 are shown in this correction article. The original article has been updated.

The online version of the original article can be found at https://doi.org/10.1186/s43031-023-00088-z.

*Correspondence:
Peng He
hepeng1@msu.edu
¹CREATE for STEM Institute, Michigan State University, East Lansing, MI 48824, USA
²College of Education, Michigan State University, East Lansing, MI 48824, USA

© The Author(s) 2024. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
He et al. Disciplinary and Interdisciplinary Science Education Research (2024) 6:16

Incorrect figure 1

Learning Outcome
Knowledge-in-Use

Intervention
Learning System

Foundation
Design Principles

Design Principle 1
Three-Dimensional Learning
- Disciplinary Core Ideas
- Crosscutting Concepts
- Science and Engineering Practices (NRC, 2012)

Design Principle 2
Project-based Learning
- Driving Questions
- Exploring and Explaining Phenomena
- Artifact Development
- Collaboration
- Constructing Models (He et al., 2023)

Design Principle 3
Student Situated Engagement
- Challenge
- Skills
- Interests (Schneider et al., 2016)

Design Principle 4
Learning Progression and Coherence
- Standard Alignment
- Intra-Unit coherence
- Inter-Unit Coherence (Fortus & Krajcik, 2012; Jin et al., 2019)

Correct figure 1

Learning Outcome
Knowledge-in-Use

Intervention
Learning System

Foundation
Design Principles

Design Principle 1
Three-Dimensional Learning
- Disciplinary Core Ideas
- Crosscutting Concepts
- Science and Engineering Practices (NRC, 2012)

Design Principle 2
Project-based Learning
- Driving Questions
- Exploring and Explaining Phenomena
- Artifact Development
- Collaboration
- Constructing Models (He et al., 2023)

Design Principle 3
Student Situated Engagement
- Challenge
- Skills
- Interests (Schneider et al., 2016)

Design Principle 4
Learning Progression and Coherence
- Standard Alignment
- Intra-Unit coherence
- Inter-Unit Coherence (Fortus & Krajcik, 2012; Jin et al., 2019)

Published online: 15 July 2024

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.