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spaces: supporting adolescents’
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Abstract

Educational designers are working to embed computation in required classes outside of computer science (CS)
courses, to promote equitable access for all students. While many studies embed computation in one discipline, few
include projects that substantively involve many disciplines. We conducted a mixed methods case study with a
sequential design to explore adolescents’ self-efficacy and engagement in computational practices, along with
practices in several disciplines of science and engineering. In partnership with two eighth-grade environmental science
teachers in a culturally and linguistically diverse urban-ring city of the Northeast US, students (N = 199) worked in teams
to design, assemble, and code for “smart”, or automated, miniature greenhouses. We report on successes in
engagement, along with tensions in self-efficacy, namely relating to generality, social factors, and emotive sources.
Specifically, we elaborate on tensions related to (1) engagement via fun and camaraderie vs. disaffection per anxiety
and stress; (2) practices as sequential vs. simultaneous; (3) prior experience with coding vs. present application; and (4)
disciplinary pre-conceptions vs. expansion. We conclude with implications for educational design of pluridisciplinary
spaces, especially for those including computation, and which seek to leverage interest and engagement to develop
self-efficacy. Also, we discuss how our study extends self-efficacy theory through its finer-grained analyses with more
diverse participants. Ultimately, our work builds on and extends current educational designs for embedding
computational practices in required, non-CS classes, a vital concern for adolescents’ present and future civic
participation, in personal, social, and professional ways.
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Introduction

“ … coding, you can make something, like, science-
related, like the plants and everything. Maybe engin-
eering. So, I guess it all mixed together.” (Gabriella,1

post-interview)

Educational designers across the world are trying to find
ways to make instruction in computing accessible to all
K-12 students, for their present and future thriving in
personal, social, and professional endeavors (Allen et al.,
2019; Lee & Malyn-Smith, 2020; Vogel et al., 2017).
When considering computational thinking (CT) Den-
ning (2017) argues that educators should focus on CT’s
manifestation in computational practices, as situated
within “domains of interest” to students (p. 38). In this
paper, we report on a project that involves at least six
disciplines (arts, biology, computer science, construction,
physics, and technology) and many domains of interest
(coding, construction, cooking, gardening, etc.), extend-
ing previous work that tends to focus on one discipline
of science.
The disciplines and practices were situated in the

learning space of a smart-greenhouse project, wherein
eighth graders in a required environmental science
course wrote code, worked with design criteria and con-
straints, and grew plants of cultural relevance for a city
with prominent Guatemalan, Haitian, Indian, Irish, Ital-
ian, Mexican, and other communities. (See Fig. 1 for an
example greenhouse.) As Gabriella noted in the epi-
graph, students’ practices during the unit “all mixed to-
gether” amidst disciplines as well as social and individual
dynamics. We seek to understand how the grade eight
students in a required environmental science class en-
gaged in practices of computation, engineering, and sci-
ence during the first iteration of the in-school-time,
smart-greenhouse project. Guided by our conceptual
framework (see Fig. 2), and recognizing the need for
additional research on embedding CT in required classes
to reach all K-12 learners, we focused our efforts on the
research questions,

(1) What educational tensions, if any, do two dyads of
8th-graders experience during a smart-greenhouse
project?
a. What, if any, tensions existed for student

engagement?
b. What, if any, tensions existed for practices of

science, engineering, and computation?
(2) How, if at all, did students develop their self-

efficacy in computation, engineering, and science?

Conceptual framework
In the present study we adopt the lens of self-efficacy the-
ory (Bandura, 1977, 1993, 2001, 2006), given an assump-
tion that socioemotional factors like attitudes, identity,
and interest tend to be more salient for long-term out-
comes than do achievement scores or course grades
(Fortus & Touitou, 2021; Maltese & Tai, 2011; Nguyen &
Riegle-Crumb, 2021; Tytler & Osborne, 2012). We in-
ferred that a pluridisciplinary approach (Hofstetter, 2012)
could support student engagement (Fredricks et al., 2004,
2016), which in turn would foster self-efficacy (Bandura,
1977; Schunk & DiBenedetto, 2016). Namely, student in-
terests in arts, biology, computer science, construction,
physics, and technology could promote participation in
computing practices (i.e., engagement), making it easier
for students to learn in the short-term, to develop self-
efficacy over the long-term.

Self-efficacy theory
Self-efficacy theory positions individuals and groups as
agents of change, while at the same time asserting that
environments and behavioral patterns are also effecting
change, in a “triadic reciprocal” relationship (Bandura,
2001, p. 14). That is, individuals/groups (personal), their
surroundings (environments), and their actions (behav-
iors) all influence each other. Self-efficacy is linked with
mediators and outcomes such as student engagement,
achievement, course choice, and career selection (Ban-
dura, 1993, 2001; Schunk & DiBenedetto, 2016). Though
there has been much work recently on self-efficacy in
computation, there remains a need for work in more
culturally and linguistically diverse settings, especially re-
search that goes beyond pre-post models, to capture the
complex processes of self-efficacy development (Schunk
& DiBenedetto, 2016).

Fig. 1 A typical example of a completed smart greenhouse. The lights,
microcontroller, and battery are placed on the exterior, whereas plants,
sensors, and most actuators (fans, pumps, etc.) reside in the interior

1All city, school, student, and teacher names are pseudonyms.
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Self-efficacy is “people’s beliefs in their capabilities to pro-
duce given attainments” (Bandura, 2006, p. 307). It can be
influenced by “enactive, vicarious, exhortative, and emotive
sources” (Bandura, 1977, p. 191), related to phenomena
such as performance accomplishments, vicarious experience,
verbal persuasion, and emotional arousal. Self-efficacy is
processed through a variety of social, situational, and tem-
poral contexts. For example, other persons’ reactions, pres-
ence or absence of safeguards, and differential persistence
of various interventions (e.g., of direct vs. symbolic experi-
ences) all effect the expression of self-efficacy. Dimensions
across which self-efficacy can vary include its magnitude,
generality, and strength. For instance, the educational inter-
vention of a coding project for different students could re-
sult in greater or lesser changes in self-efficacy, the degree
to which it applies in different disciplines (e.g., coding in
science vs. coding in humanities), and the durability of the
changes (i.e., resistance to fading over time).

Student engagement
Student engagement is generally conceptualized over
shorter timescales than is development of self-efficacy.
There remains considerable debate about student engage-
ment, including its scale (e.g., individual or group) and its

relationship with theories of motivation and self-regulated
learning (Boekaerts, 2016). For now, it appears that a three-
part model by Fredricks et al. (2004) remains the most in-
fluential (Christenson et al., 2012), wherein student engage-
ment is considered to have affective/emotional, behavioral,
and cognitive dimensions, essentially related to feeling,
doing, and thinking, respectively. It should be noted that
Fredricks et al. (2016) have since explored social engage-
ment, which relates to how individuals participate in paired,
small-group, or full-class academic interactions.

Interest
We sought to promote student engagement (and ultim-
ately self-efficacy) by building on students’ interests. Our
hopes were grounded in the well-established links be-
tween interest, engagement, motivation, and self-efficacy
(Järvelä & Renninger, 2014; Luo et al., 2021; Vongkul-
luksn et al., 2018). We followed the Four-Phase Model
of Interest and Development by Hidi and Renninger
(2006), in which interest develops from triggered situ-
ational interest, maintained situational interest, emer-
ging individual interest, and well-developed individual
interest. For example, seeing an LED light strip in rain-
bow colors might result in “short-term changes in

Fig. 2 Our conceptual framework for studying adolescents’ practices of computing, engineering, and science. At least six disciplines were
pluralistically represented in the project, with two more disciplines (chemistry and earth & space science) emphasized in other implementations
(Asante et al., 2021). In general, pre-existing interest in one or more discipline(s) supports engagement in the project, which in turn promotes
self-efficacy for computing in discipline(s)
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affective and cognitive processing” (triggered situational
interest; p. 114) for a student, such as an affinity for the
technology and a curiosity about how to manipulate the
colors. If the student continues to learn about the LED
strip and develops proficiency in controlling it over a
longer period of time, then that student has maintained
situational interest. Subsequently, if the student volun-
tarily works with LED light strips during lunch or after-
school, then the student holds emerging individual inter-
est. Finally, if the student asks to take the LED light strip
home after the end of the project or seeks out additional
classes, clubs, or camps, then the student has well-devel-
oped individual interest. We hoped that our pluridisci-
plinary approach would both draw on students’ pre-
existing individual interests and introduce students to
some new, situational interests, which may or may not
subsequently develop into new individual interests.

Literature review: integrating computational thinking (CT)
into required coursework
Since Wing’s (2006) seminal revival of computational
thinking (CT), initially pioneered by Papert (1980), CT has
been framed by a variety of private and public institutions,
in terms of attitudes, core concepts, dispositions, habits,
practices, processes, and skills. Several CT frameworks
have gained popularity in recent years; for this project, we
based our work primarily on a review by Grover and Pea
(2013), as detailed by our analytical framework in the
Methods section. In this section, we first review the extant
literature on embedding CT in required classes for K-12
learners. Then we survey scholarly writings on CT for
smart-greenhouses, which to date have been predomin-
antly in tertiary or informal education settings. We argue
that our paper builds on previous work that took in-depth
approaches to single disciplines, and extends the scholarly
base in more pluridisciplinary ways.
Most work has been conducted in classrooms that

focus on one discipline within science, technology, en-
gineering, and math (STEM), although computational
thinking also shows promise for the arts and humanities
(Denning, 2017; Grover & Pea, 2018; Voogt et al., 2015;
Wing, 2006). Recent efforts at embedding computational
thinking in non-CS classrooms have been unified under
the banners of “STEM-C” or “STEM+C”, denoting
STEM with computing. One particularly successful pro-
ject involves agent-based modeling with required high-
school science classes in metropolitan Chicago, US, es-
pecially in the discipline of biology (Wilensky et al.,
2014). High-school physics can also be a fruitful subject
in which to embed CT, as evidenced by a project-based
learning approach from Shin et al. (2021). In terms of
out-of-school-time learning with high schoolers, one
study found small to large gains in CT self-efficacy for a
two-summer total of 35 students completing Making

activities in “a public library of a large Midwest [US]
city” (Yin et al., 2020, p. 195), also developing instru-
ments to measure decomposition, abstraction, algorith-
mic thinking, and pattern generalization.
With students in grades 3–5, Century et al. (2020)

found synergies between science, social studies, and Eng-
lish Language Arts (ELA), when they took care to align a
problem-based social-studies units, such as one on inva-
sive species in Florida, US. In another elementary-school
study, Wei et al. (2021) in northern China used an ex-
perimental study to find that partial pair programming
– where students first work together, then individually
complete final products – showed improvements in CT
for boys in boy-boy groups and girls in girl-boy groups.
In a study with elementary schoolers in the Canton of
Vaud, Switzerland, robotics showed promise at integrat-
ing computational thinking into non-CS classes (Chev-
alier et al., 2020).
At the middle-school level, Rosen et al. (2016), based

in Georgia, US, have created three different design
courses to integrate STEM+C concepts through project-
based inquiry learning in engineering. Also, in Massa-
chusetts, US, Tucker-Raymond et al. (2019) used cri-
tique of computer games to facilitate students’
participation and engagement in learning about climate
change. Despite the success of exemplars listed here,
more empirical work is needed to understand how to
embed CT in a variety of interdisciplinary settings (Gro-
ver & Pea, 2018; Voogt et al., 2015).
Post-secondary, informal, and industry organizations

are exploring the benefits of semi- or fully-automated
greenhouse management systems (e.g., Birsan et al.,
2017; Christopher, 2013; Hernandez, 2018). However, to
our knowledge, no projects have yet examined the use of
smart greenhouses in required K-12 classes. In-school-
time interventions are vital to reach all learners, as out-
of-school-time programs are affected by self-selection of
individuals who are already interested in STEM fields,
though they also may close some gaps related to gender
and race/ethnicity (Allen et al., 2019).

Methods
In this study we conducted a comparative mixed
methods case study with a sequential design (Creswell &
Plano Clark, 2018), using quantitative methods for
selecting participants then qualitative methods for ana-
lyzing the experiences of student-teams. In comparing
two cases, we arrived at deeper understandings as we
made sense of similar and different data generated from
a variety of sources.

Setting and participants
Central Middle School is one of two, grades 6–8 schools
in Mills City, an urban ring city in the Northeast US.
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Mills City is a culturally and linguistically diverse city,
including many speakers of English, Haitian Creole, and
Spanish, with major waves of immigration from Europe
in the mid-1800’s and Latin America and the Caribbean
in recent decades. In addition to current immigration,
there is gentrification, especially in defunct mills being
converted into luxury apartments.
We worked with two teachers and 199 students in

grade-eight environmental science. For gender, 193 stu-
dents self-identified, 49% (N = 94) as female, 49% (N =
95) as male, and 2% (N= 4) as non-binary. Racial and
ethnic data are presented in Table 1. School-wide, about
50% of students learned a language before learning Eng-
lish, about 10% were classified as having limited profi-
ciency in English, about 20% received special education
services, and about 30% were classified as “economically
disadvantaged” per state data.
The two cooperating teachers, Mr. Hanrahan and Ms.

Petralia, were in their third year working together at
Central Middle School. Both teachers are white-coded,
though Mr. Hanrahan self-identified as multiracial
(Black and White). This intervention was the first time
that either Mr. Hanrahan or Ms. Petralia had endeav-
ored to teach computational thinking practices through
coding, and they were both beginning programmers.
Considering the complexity of physical computing and

the lack of related training in science teacher prepar-
ation programs, the research team conducted profes-
sional development to support science teachers in
meaningfully integrating physical computing into their
classrooms (Gendreau Chakarov et al., 2019). The fourth
author planned and led approximately five hours of pre-
intervention professional development. The sessions
consisted of guided practice, with teachers completing
activities that students would later encounter. During
implementation, the research team provided at least one
teaching assistant, and usually one or two observers as
participants (Creswell, 2013), during any given class
period. We made this design choice to ensure that Mr.
Hanrahan and Ms. Petralia had sufficient support given
the limited time we had for professional development.
Throughout the pre-intervention professional develop-

ment, we kept track of their learning progression and
documented major challenges they encountered. The
two teachers took very different approaches to making
sense of how the smart greenhouse works as a complex
system. Mr. Hanrahan took a more simultaneous, holis-
tic approach as he focused on learning about all

functions of the smart greenhouse before moving on to
learn about codes for each function. His approach
sought to “encourage play and failure” (Hadad et al.,
2020, p. 164), as students could brainstorm different
configurations and criteria, even before they could test
the feasibility of what they brainstormed. On the other
hand, Ms. Petralia’s approach was a more sequential,
analytic approach, as she first dived deeply into explor-
ing codes for one function, and would not move on to
the next function until she felt confident (Xu, 2019). Her
approach was more targeted towards “continually asses-
sing student understanding, and scaffolding learning
based on that assessment” (Hadad et al., 2020, p. 164),
reflecting a priority on “helping … students be academic-
ally successful” (Ladson-Billings, 1995, p. 477). Together,
Mr. Hanrahan, Ms. Petralia, and the fourth author were
able to form a community of learners (A. J. Rodriguez,
2015) as they trusted each other and respected their dif-
ferent learning styles, resulting in some adjustments to
build on each others’ strengths (Xu, 2019).

Curriculum design
The Innovation in Urban Science Education (IUSE) lab
led the development of the smart greenhouse hardware,
software, and instructional materials. Lesson plans are
available online at <https://growthings.readthedocs.io/
en/latest/index.html>. The fourth author crafted a se-
quence of guided activities based on the Wio Link
microcontroller, the EsPy integrated development envir-
onment (IDE) for the MicroPython programming lan-
guage, and a variety of add-on components (light
sensors, temperature-and-humidity sensors, light strips,
fans, etc.). MicroPython can run on relatively inexpen-
sive hardware, yet has robust functionality including
interaction with the “Internet of Things”. The hardware
and software were integrated into a plastic greenhouse
about 38 cm long, 24 cm wide, and 17 cm tall (see Fig.
1). Choosing plants that we thought would have cultural
relevance, we gave students the option of growing basil,
cilantro, lettuce, or a combination of any two. In
addition to “integrating the students’ lives and culture”
(Hadad et al., 2020, p. 164), the choice of plants “helped
students to be … culturally competent” (Ladson-Billings,
1995, p. 477) through exposing members of various eth-
nic groups to prominent herbs in each others’ cuisines.
Further, there was potential to donate plants to the
school cafeteria or a local food assistance program, ex-
plicitly “connecting students to resources … outside the

Table 1 Racial and ethnic data for 192 participants who self-identified (of 199 total participants)

African, African-
American, Black

Asian, Asian-
American

Caribbean, Black (ex:
Haitian, Jamaican)

Hispanic
or Latinx

White (non-Hispanic), Anglo,
Caucasian, European

2+ races / ethnicities
(please specify)

Other
(please
specify)

12 (6%) 8 (4%) 9 (5%) 75 (39%) 69 (36%) 15 (8%) 4 (2%)
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classroom” (Hadad et al., 2020, p. 164) and supporting
students in being more “sociopolitically critical” (Lad-
son-Billings, 1995, pp. 477–478) with respect to topics
like food deserts and food (in security (Asante et al.,
2021).
The IUSE lab planned for 10, 56-min class periods,

with the final period consisting of a community Show-
case. The curriculum had four subunits, as shown in
Table 2. Throughout the project students worked in
teams of two or three. Because of make-up days for wea-
ther cancellations, we expanded to 13 class-periods,
allowing extra time for remediation or enrichment.
Overall, we designed the smart greenhouse curriculum

to help students integrate computational thinking and
practices with core concepts in several science subjects.
Namely, we considered science and engineering prac-
tices per the Next Generation Science Standards (NGSS;
NGSS Lead States, 2013) and computational thinking el-
ements per Grover and Pea (2013). The smart green-
house curriculum challenged students to obtain,
evaluate, and communicate information about biology to
identify environmental factors that would impact plant
growth, namely light, air temperature and humidity, air
flow, and more. The biology-situated practices enabled

the students to program the appropriate sensors and ac-
tuators, using abstractions and pattern generalizations,
as well as algorithmic notions of flow control. Also, stu-
dents needed to plan and carry out investigations in
physics to properly wire the circuits required to power
the exhaust fans in their smart greenhouses, which
would also enable them to tell the difference between
coding and wiring errors, thereby engaging in debugging
and systematic error detection. Further, students needed
to incorporate logic with Python, or use math and com-
putational thinking, to make sense of and correctly apply
if-then-else loops, a type of conditional logic, that would
allow sensors and actuators to control environmental
factors within an ideal range for plant growth.

Research Design & Data Generation
We used a mixed-methods design, namely a convergent
design that included participant selection for explanation
(Creswell & Plano Clark, 2018). A summary is provided
in Fig. 3.
In Phase 1 (participant selection for explanation) we

used pre-survey results to identify students who scored
well-above-, nearly-at-, or well-below-average for com-
puter science (CS) interest and confidence, which are re-
lated to self-efficacy in primarily emotive and situational
ways (Bandura, 1977). We sampled for maximum vari-
ation (Creswell & Plano Clark, 2018) to focus our data
generation on student-teams with high or low levels of CS
interest and confidence, as well as a balance of teams be-
tween the two classroom teachers. In total, we followed
eight student-teams, one per class per teacher. Only four
teams orally consented to be audio- or video-recorded,
despite all having returned written permission forms.
Thus, our final data corpus and analysis are limited by
convenience sampling (Creswell & Plano Clark, 2018).
In Phase 2 (explanation), we first focused on the tran-

scripts of three rounds of interviews we conducted with
the four focal students, including a pre-interview before

Table 2 Overview of smart-greenhouse curriculum sequence

Day(s) Topic(s)

1 Brief introduction to “smart” (automated) greenhouses,
microcontrollers, and the MicroPython programming language

2–3 How light affects plant growth, and how to monitor and
control light

4–6 How temperature and humidity affect plant growth, and how
to monitor and control temperature and humidity; includes
activity that links variations in light, humidity, and temperature

7–9 Using engineering design principles to construct a working,
miniature, “smart” greenhouse

10 Showcase for schoolmates, administrators, and community
members

Fig. 3 Mixed-methods sequential design, including participant selection followed by explanation
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they began to experience the curriculum, a post-
interview after they finished assembling and program-
ming their smart greenhouses, and a follow-up interview
several months after the post-interview. All interviews
were semi-structured to give students the freedom to
speak extensively about their experience, with the inter-
viewers following-up with probing questions as needed.
Second, based on findings made from our preliminary
analysis of the interview transcripts, we located video
clips of a series of key moments captured by cameras set
up in the classrooms that captured students’ conversa-
tions, body language, and more. Third, based on the
video clips selected, we extracted the corresponding
screen recordings of coding work, which indicated what
was happening in the focal students’ coding software
when they were engaged in the key moments. Qualita-
tive data sources are shown in Table 3, and interview
questions are listed in Table 4.

Our analytical framework for student practices
As mentioned in the conceptual framework, we view
interest, engagement, and self-efficacy through students’
practices in various domains and disciplines. We concur
with the NGSS (NGSS Lead States, 2013) that engaging
in practices “requires not only skill but also knowledge
that is specific to that practice” (p. xv). The NGSS con-
stitute most of our framing of engineering and science
practices, though we supplement them with Rodriguez’s
(2015) dimension of engagement, equity, and diversity
practices.
During the first round of coding, we followed Grover

and Pea’s (2013) computational elements, which we ab-
breviate as abstractions, algorithms, conditionals, debug-
ging systematically, efficiency and performance, iterative/
recursive/parallel, modularizing, processing, and symbols.
Given our partnership with a public school in Massachu-
setts, in the second round of coding we added computa-
tional practices of the Massachusetts Digital Literacy
and Computer Science Framework (MA DLCS; Massa-
chusetts Department of Elementary and Secondary Edu-
cation [MA DESE], 2016).

Data analysis
As mentioned earlier, we focused on two student-teams
through a combination of sampling for maximum vari-
ation and convenience (Creswell & Plano Clark, 2018).
Quantitative analysis was performed by Amy Semerjian,

a colleague in the IUSE lab, using Statistical Package for
Social Sciences (SPSS®). Because only roughly 50% of
students completed the post-survey, including just one
of the four focal participants, we omit post-survey ana-
lyses from this article. Qualitative analysis (QUAL) was
conducted by the first three authors. We used Dedoose,
an online platform where we uploaded interview tran-
scripts and classroom videos. We then performed
highlighting on lines in the transcripts or episodes of the
videos that we found representative (Erickson, 2006),
and finally discussed our choices in a series of 11 weekly
meetings.
Our analysis started by examining the quantitative

data from pre- and post-surveys. We then coded pre-
and post-interviews of the two focal teams of two stu-
dents each, using both deductive coding per our concep-
tual and analytical frameworks, as well as inductive
coding per phenomena that resonated with emerging
findings (Miles et al., 2014). In addition to process and
emotion codes, we included in vivo codes, especially for
students’ epiphanies (Creswell, 2013). In these ways, our
analysis included both phenomenological and narrative
qualities (Creswell, 2013).
After coding interviews, we began analysis of data gen-

erated from video (Erickson, 2006) for the two focal
teams. We analyzed one computation-intensive class
period and one engineering-intensive class period for
each of the two teams. Erickson’s (2006) “whole-to-part,
or inductive, approaches” (p. 183) helped us focus on
four salient episodes of about 3–5 min each, transcribing
nonverbal as well as verbal elements. During follow-up
interviews (~ 12min each) conducted four months after
the intervention, we watched one video episode each
with two of the participants (one per focal team).
Upon completion of video analysis, we transcribed and

open coded (Creswell, 2013) field notes for the four epi-
sodes. We then transcribed and open coded students’
final written reflections. After that, we transcribed and
coded our conversations of the follow-up interviews.
Our final phase of data analysis was compiling our find-
ings into tables for cross-case analysis, firstly in a case-
oriented approach (i.e., for each team) and secondly in a
variable-oriented approach (i.e., comparing and con-
trasting teams with each other) (Miles et al., 2014). For
deductive codes we began with four for self-efficacy
(affective, cognitive, motivation, and selection), three for
engagement (affective, behavioral, and cognitive), and 20

Table 3 Qualitative data sourcing during Phase 2

Interviews Field
notes

Audio-
only

Video from camera
(with audio)

Video from screen
capture (with audio)

Work samples (from all participating students)

14 pre-, 17 post-, 2
follow-up

54
pages

20 h 20 h 10 h “Do-Now” responses, project-planning worksheets, in-
terim reflections, final reflections

Note. Roughly one-fourth of the data above were coded in this study, for the two focal-groups
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for practices (eight for NGSS, nine for computing, eight
for disciplines, and three of equity, engagement, and di-
versity). During analysis, two additional codes for prac-
tices emerged, namely whether practices from different
disciplines were viewed by students as sequential or sim-
ultaneous. In considering both the frequency and pat-
terns of codes (Saldaña, 2009), we focused on 26 codes
described in Table 5.

Results
Overview of findings
We found four main tensions (Research Question #1),
primarily for generality, and for emotive and social fac-
tors (Research Question #2), as students used pluridisci-
plinary approaches to engage (Research Question #1a) in
practices of computation, engineering, and science (Re-
search Question #1b). The four tensions are (1) engage-
ment via fun and camaraderie vs. disaffection per

anxiety and stress; (2) practices as sequential vs. simul-
taneous; (3) prior experience with coding vs. present ap-
plication; and (4) disciplinary pre-conceptions vs.
expansion (see Table 6). Of the eight teams we followed,
we present data from two teams per convenience and
maximum variance sampling (Creswell, 2013).

Findings from phase 1 (participant selection model)
As shown in Table 7, teammates’ comfort, skill, and
interest, per seven-point Likert-style items on the pre-
survey, were not always aligned. It might seem counter-
intuitive that an adolescent could be interested and un-
comfortable, but self-efficacy theory suggests that vicari-
ous and exhortative sources can offset emotive sources
(e.g., a student who aspires to be like, and is encouraged
by, a role model might persist through initial frustration
with a new skill).

Table 4 List of interview questions

pre 1. What comes to mind when you hear the word “coding”?

2. Have you done coding before? Can you tell me about it?

3. Are you interested in coding? Why or why not?

4. What do you think coding can do? What do you want to do with coding?

5. What kind of jobs do you think involve coding? Can you provide a couple of examples?

6. Do you think scientists do coding in work? Why or why not?

post 1. What do you think you have learned from the smart greenhouse project?

2. Could you tell me how your greenhouse works?

3. Can you tell me about a problem you ran into while you were coding? How did you fix that problem?

4. Now you have completed the project, do you see yourself wanting to learn more about coding? Why?

5. What else do you think you can do using the science and coding you have learned?

6. When you heard that you were going to do a coding project, what did you think? Has this perception changed? Why or why not?

7. Do you want to take your greenhouse home? Why? What else would you like to do with it?

8. Do you think scientists do coding in work? Why or why not?

9. Did you tell anyone at home about the project? If yes, who? How did you describe it to them?

follow-
up

1. How, if at all, did the project make you feel engaged, in thinking, feeling, and doing?

2. Which people, documents, etc., did you think were useful supports? Which provided too much or too little support?

3. What practices of computation, engineering, and science did you do? How much were those practices separate (one-at-a-time), and
how much were those practices together (more-than-one-at-a-time)?

Table 5 Focal codes for final cross-case analysis

Category Focal codes Examples

Self-efficacy expectational: enacted, vicarious, exhortative, emotive,
magnitude, generality, strength;
personal: social, situational, temporal

“… we had some trouble, but we know that if we had more time, we
could have figured it out.” –Faith & Taylor, final reflection

Engagement affective, cognitive, behavioral “I guess [coding] is really fun, and I really enjoy it in my free time.” –Clara,
pre-interview

Disciplines arts, biology, chemistry, computer science, construction,
earth & space science, physics, technology

“controlling experimenting with the plants, what they do, what they will
come out to be.” –Gabriella, post-interview

Practices communicating, designing, personal relevance, sequential,
simultaneous

“connections with family experiences (grandma as gardener, e.g.)” –field
notes, 2018 June 8
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Findings from phase 2 (explanation)
In Phase 2, we analyzed the qualitative data we gener-
ated from video recordings, pre- and post-interviews,
field notes, and work samples (see Table 3). Per the pro-
cesses outlined in the methods section, we arrived at the
four tensions.

Tension 1: engagement via fun and camaraderie vs.
disaffection per anxiety and stress
Clara and Gabriella were affectively engaged in the pro-
ject before it officially started, and that engagement per-
sisted at least through the summer vacation. In her post-
interview, Clara stated, “… I was really happy because I
knew I was gonna work with my best friend on this pro-
ject, and we were gonna do a really good greenhouse
….” Her happiness, shared with and by Gabriella, per-
sisted as the two enjoyed frequent smiles with successes,
small laughs at mistakes, and statements of satisfaction
with their “final” product. We use quotations around
“final” because Gabriella took the greenhouse home and
continued to work on the project, eventually solving an
issue with controlling the light strip, likely supported by
emotive sources of self-efficacy.
Whereas neither Clara nor Gabriella affectively exhib-

ited very much stress or anxiety, Taylor expressed frus-
tration with her project. As Taylor recalled in the post-

interview, “It was frustrating because the codes may be
wrong, or … like when our MCU [microcontroller unit]
wasn’t working, you have to figure out why it’s not
working.” That is, the complex nature of the greenhouse
hardware and software sometimes made problem-
solving a complicated process. Fortunately for Taylor,
her teammate, Faith, often offered comfort or encour-
agement when needed. For example, when Taylor was
stressed about finding a computer file, she declared, “I.
Hate. Everything. About this.”. Faith then replied, “No,
have a good attitude”, and went on to muse, “wow, wow,
wow”, thereby piquing Taylor’s curiosity. Ultimately the
frustrating situation was resolved, as the teammates
found their computer file, in part due to Faith’s exhorta-
tive and emotive influences upon Taylor.
On a broader timescale, Taylor expressed anxiety

about tests and grades. In her post-interview, when
asked about her favorite part of the project, she con-
fessed, “I think I liked [the project] best because I’m not
really good at test-taking.” Taylor’s anxiety about poor
performance on tests extended to her grades in general,
including grades for the smart-greenhouse project. One
manifestation is when Taylor urgently declared, “I really
do NOT want to fail.” Faith nonchalantly reassured her,
“We won’t.”, to which Taylor relented, “Okay.” In these
ways, Faith helped to redirect Taylor’s potentially

Table 6 Tensions in student practices, from variable- and case-based analyses

Tension Clara & Gabriella Faith & Taylor Self-efficacy
connection

1. engagement via
fun and camaraderie
vs.
disaffection per
anxiety and stress

• Laughing about minor mistakes
• Focus on aesthetics
• Checking partner’s work
• Helping paired-group

• Playing with materials, talking about socializing
• Providing emotional support
• Concerns about grade-anxiety and test-stress

emotive (for
expectational
change)

2. practices as
sequential
vs.
simultaneous

• Began with one set of canonical practices per
day

• Ended with “different mixes”, operationalized
as “10min [at a time]”

• Connected engineering with science, but not
computing

• Worked in parallel (e.g., one completing a science
worksheet, other writing code)

generality (for
expectational
change)

3. prior experience
with coding
vs.
present application

• Previous computational experience in grade
six class and after-school club

• Minimal use of TA, who nonetheless used
Socratic questioning amidst errors

• Rapidity of coding, at expense of consistency
with science

• Previous computational experience in grade six class
only

• Frequent use of TA, often in a confirmatory manner
• Quickness to claim broken items, rather than engage
in troubleshooting

social (for personal
change)

4. disciplinary
pre-conceptions vs.
expansion

• from technology-only (“computers”), to biology
(“plants”) and engineering

• from a computer-science orientation towards
apps, to a more interdisciplinary orientation

• previously had “never really thought they [scientists]
used much of it [coding]”

• from math, technology, and physics to earth & space
science (“meteorologists”), biology, and chemistry

social (for personal
change)

Table 7 Background information for two student-teams (Clara & Gabriella; Faith & Taylor)

Name Race & ethnicity Gender Comfort with coding Skill in coding Interest in coding & computer science Typical grade in science

Clara Latinx female very low medium very high A- to B+

Gabriella Latinx female medium-high medium-low medium-high A- to B+

Faith White female medium very low medium-low B- to C+

Taylor Asian female very low medium-low medium-low B- to C+
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disaffecting (i.e., disengaging) feelings of stress and anx-
iety, and, through a combination of fun and camaraderie,
affectively re-engage Taylor in the project. Taylor recog-
nized this benefit in her post-interview, stating that “on
a test if you don’t know the answer, you can’t ask any-
thing”, as opposed to projects, wherein “if you have
something wrong, you can ask a question”. Thus, Tay-
lor’s experience with a team-based project is reflective of
more social views on learning, including social and situ-
ational connections with self-efficacy (Bandura, 1977;
National Academies of Sciences, Engineering, and Medi-
cine, 2018).

Tension 2: practices as sequential vs. simultaneous
When considering practices of computation, engineer-
ing, and science, teammates reported the three disci-
plines feeling less connected towards the beginning of
the unit and then more connected as the unit pro-
gressed. When asked in her follow-up interview about
how the practices were or were not overlapping, Clara
responded,

… one day, we would do, um, like, [the] science
part; one day we would do engineering. At first, we
felt like really scheduled to do, like, each task each
day. But then, as more time went by, we felt like we
were doing like, maybe, like, the three of them at
the same time. Like, 10 minutes on this [science] in
class, and then 10 minutes on the engineering, and,
like, the rest on computation. Or like, all, like, uh,
engineering and computation, or like, different
mixes during classes. (Post-interview, June 2018)

The notion of “mixes” was echoed by Clara’s partner,
Gabriella, as noted in this paper’s epigraph. In reviewing
data from video, at times the scaffolded activities and ar-
tifacts appeared to be synergistic. For example, Gabriella
once reviewed her notes on humidity and temperature
ranges for plants (science), converted the ranges into cri-
teria for the greenhouse design (engineering), then
worked with Clara to customize their team’s code (com-
putation). This example suggests that Gabriella might be
using a direct experience to improve the generality of
her self-efficacy for computing (Bandura, 1977), by situ-
ating computing in multiple disciplines.
Faith and Taylor had more sequential approaches to

practices than did Clara and Gabriella. For example,
when Faith was working to make her team’s code con-
sistent with engineering design considerations, Taylor
was independently completing a worksheet about sci-
ence concepts. This bifurcation was consistent with one
of Faith’s responses in her follow-up interview. When
asked the same question that Clara was asked about any

overlapping of computational, engineering, or science
practices, Faith responded,

… with the engineering … there was, like the, the
propeller-type thing [a servo motor with a spinning
arm attached]. And it would open the window and
close it. And … then we, like, decided … when to do
that [open or close the window] based on, like, the
science we found – the temperature and the humid-
ity and stuff. (Follow-up interview, October 2018)

Despite the presence of computational practices for con-
trolling the servo motor, Faith described only engineer-
ing and science in her example. That is, metacognitively
Faith was unaware that she was engaging in computa-
tional practices, namely to “manage information”, which
the Massachusetts DLCS includes under the umbrella of
abstracting (MA DESE, 2016). This evidence hints at a
low strength of self-efficacy developed during the pro-
ject, as any interdisciplinary connections made during
the unit appear to have not persisted past the summer
months.

Tension 3: prior experience with coding vs. present
application
For the team of Clara and Gabriella, there was a sub-
stantial discrepancy of prior experience with coding,
which might have created differential self-efficacy due to
performance accomplishments (Bandura, 1977). Clara
had participated in a Girls Who Code club. On the other
hand, Gabriella claimed to have never done coding be-
fore the start of the smart-greenhouse project. Nonethe-
less, there were times when Clara’s expertise had gaps in
taking skills from App Inventor and applying them in
MicroPython. For example, in App Inventor the com-
ments appear as rounded rectangles with yellow back-
grounds and various colors of trim. However, in the
EsPy IDE for MicroPython (i.e., the program in which
students wrote their code), commented sections of code
lack any shape or trim, and they appear as green text
against a shared background color (black). When Clara
was asked by an observer-as-participant (Creswell, 2013)
to think aloud about why some of her team’s code was
green, she replied, “I don’t know.” In fact, it was Gab-
riella who first answered the question, noticing that the
hashtag symbol (#), being intended as an abstract place-
holder for some value (in this case, temperature), had
turned the remainder of the line into a comment, and
was therefore being ignored by the Wio Link microcon-
troller unit. This one character (#), misinterpreted by
the more experienced coder, would have nullified all
temperature-based controls, had the participant-
observer not called the issue to attention. In this case,
the temporal persistence of Clara’s block-based coding
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experience resulted in a disadvantageous behavior, which
was mitigated by the emotional arousal of excitement
for the project and comfort in working with a friend.
Faith and Taylor had similar backgrounds in coding,

namely a technology literacy course in sixth grade.
However, neither teammate remembered much from
their experience doing block-based coding in Scratch,
resulting in a low magnitude of self-efficacy from per-
formance accomplishments. According to Taylor, the
main activity from sixth grade was based on “a
worksheet-type thing online where they would teach
you how to kind of get the gist of [coding].” When
asked if the activity involved any problem-solving,
Taylor said, “No.” On the other hand, the smart-
greenhouse unit frequently involved problem-solving.
In her post-interview, Faith stated, “I learned that
coding takes a lot of determination and perseverance
and optimism because things are going to go wrong a
lot.” Faith then went on to discuss troubleshooting
various spelling or syntax errors. Having worked with
block-based coding in the distinct social and situ-
ational context of sixth grade, Faith and Taylor had
to adjust their understanding of coding when using a
text-based approach in eighth grade. Though sur-
prised by the unexpected difficulties, Faith and Taylor
adapted to the new situation, without being impeded
by any strong attachments to their previous coding
experiences. Thus, Faith and Taylor were supported
by emotional arousal in similar ways as Clara and
Gabriella.

Tension 4: disciplinary pre-conceptions vs. expansion
Clara, Gabriella, Faith, and Taylor – like many of their
classmates – entered the smart-greenhouse unit with
pre-conceptions of coding as primarily in the domains of
computer science, technology, and physics. In their post-
interviews, they expressed an awareness of coding for
curriculum-proximal topics (biology and engineering)
and for curriculum-distal topics (chemistry and earth &
space science). As the curriculum-proximal disciplinary
expansions are straightforward, we now discuss the
curriculum-distal topics.
For chemistry, in her post-interview Taylor made connec-

tions with steam, chemical reactions, and weather, which
were not focal elements of the smart-greenhouse project:

If we're doing chemicals and reactions and stuff,
you could have a temperature sensor above it.
When you're pouring the water and the steam may
be able to tie in to what the temperature of the
water may be … . I think meteorologists probably
do use them when they're trying to figure out the
weather, and what the weather may be like outside
right now.

Taylor perceived the pluridisciplinary possibilities of the
curriculum, without knowing its manifestations in the
research team’s work with partners in different schools
and grade levels (Asante et al., 2021). This perception
shows promise for the generality of Taylor’s self-efficacy
for computation in disciplines.
Such disciplinary expansions increase the likelihood of

youth engaging in practices of computation, which may
subsequently develop their self-efficacy. As the field of
computer science works to improve representation and
equity, more and broader pathways to participation show
promise for closing gaps in opportunity (Blikstein, 2018;
S. L. Rodriguez & Lehman, 2017).

Summary
Our findings illustrate some tensions that eighth grade
students in a required environmental science class expe-
rienced as they engaged in practices of computation, en-
gineering, and science during a smart-greenhouse
project. As detailed above, the intervention supported
the generality of self-efficacy for computation in disci-
plines, through social contexts and emotive sources. Un-
derstanding these processes of growth, especially in
more pluridisciplinary ways, can support the design of
more equitable learning environments, as we elaborate
in the Discussion.

Discussion
In this paper, we presented findings from an in-school-
time, smart-greenhouse intervention with grade eight
students in two required environmental science classes.
We highlighted four main tensions that emerged from
our data analysis, in ways that spanned interest, engage-
ment, and self-efficacy. In this section we explore more
deeply the connections with theory, and how those con-
nections relate to practice.

Implications for theory and practice
Self-efficacy theory in education
In their review of research on self-efficacy theory in edu-
cation, Schunk and DiBenedetto (2016) identified six
types of self-efficacy. In this section, given our student-
team unit of analysis, we focused on three types: self-effi-
cacy for learning, self-efficacy for self-regulated learning,
and collective self-efficacy. In addition to identifying
types of self-efficacy, Schunk and DiBenedetto (2016)
highlighted four directions in need of more research.
The current paper addresses three of the four directions,
and ongoing work (Asante et al., 2021) addresses the
fourth direction, out-of-school settings. Interactions with
the cultural and linguistic diversity of participants from
Mills City relate to cultural backgrounds; the connec-
tions with peer-, school-, family-, and community-
related matters connects with contextual influences; and
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our use of observations, think alouds, and traces ex-
plores the dynamic nature of self-efficacy.
Along with the Western/non-Western cultural dialectic

emphasized by Schunk and DiBenedetto (2016), our work
adds a Global North/South dialectic. For the former,
insight comes from Taylor’s anxiety towards individualis-
tic works and her excitement for collectivist projects. This
attitude was evident from the previously cited excerpt
from her post-interview, that “on a test if you don’t know
the answer, you can’t ask anything”, but in projects, “if you
have something wrong, you can ask a question.” For the
Global North/South dialectic, Clara’s emotional arousal
for coding is due in part to her visits to her homeland of
Guatemala, where she teaches near-peers about coding.
Her work in the Global South highlights some diversity
that might other get hidden by the umbrella US Census
category of “Hispanic/Latino”, which hides factors related
to Western/non-Western and Global North/South cul-
tural backgrounds (National Academies of Sciences, En-
gineering, and Medicine, 2018).
Taylor’s test aversion and project affinity also connect

with contextual influences, namely those related to
school and peers. Within a broader social context where
opportunities for computing education are inequitably
more available through electives, clubs, and camps, espe-
cially in more affluent communities (Blikstein, 2018),
our study addresses the affordances and limitations of
embedding computation in science classes that all stu-
dents can access. Our findings echo those of Wei et al.
(2021), in that peer support and school accountability
might be harmonized through communal preparations
and individual products. In our case, the team prepara-
tions preceded a community showcase, during which
students were individually responsible for answering visi-
tors’ questions. With only a participation grade attached,
students felt incentivized to prepare for the showcase,
without the added anxiety of a major grade. Our findings
with family- and community-related influences are much
more anecdotal, limited to slight evidence of students
using the plants in their home culture’s cuisine, or mak-
ing connections with parents and grandparents with
cooking, landscaping, and gardening expertise. These
connections merit further exploration, which we do
more in our out-of-school-time implementations (As-
ante et al., 2021).
Though our findings speak of observations in a more

holistic sense, the data sources include the think alouds
and traces encouraged by Schunk and DiBenedetto
(2016) for understanding the dynamic nature of self-
efficacy. For think alouds, we had observers-as-
participants (Creswell, 2013) ask probing questions of
student-teams during their work-time. Our version of
traces, or “observable measures that students create as
they engage in tasks” (Schunk & DiBenedetto, 2016, p.

50), include screen recordings in which students can be
seen making and correcting errors (debugging), as well
as conceptualizing and manipulating environmental vari-
ables of interest (abstracting). These artifacts lend
insight to how technology can facilitate a trial-and-error
approach that can be supported in varying degrees and
ways by self-efficacy for computing in disciplines.

Cognitive development and self-efficacy
Bandura (1993) described four processes through which
self-efficacy leads to cognitive development. Tension 1
(engagement ↔ disaffection) primarily relates to affective
and motivational processes; Tensions 2–4 (sequential
practices ↔ simultaneous practices, experience ↔ appli-
cation, and pre-conceptions ↔ expansion) pertain to cog-
nitive processes.
Bandura (1993) described affective processes of self-

efficacy as acting in inhibitory ways. In one sense, the
fun and camaraderie of Tension 1 could be seen as anti-
dotes to the toxic nature of anxiety and stress. Also, the
project-based nature of the unit circumvents test anx-
iety, a concern for Taylor and likely additional students.
Further, a team-based approach develops adolescents’
collective self-efficacy. Improved affect towards compu-
tation, engineering, and science could increase the
chances of adolescents choosing camps, classes, clubs, or
careers in the fields of science, technology, engineering,
and mathematics (Allen et al., 2019; Fortus & Touitou,
2021; Maltese & Tai, 2011; Tytler & Osborne, 2012).
With regards to motivation processes, positive peer

pressure from a partner can address Bandura’s (1993)
subprocess of cognized goals, or shorter-term targets
within a longer-term endeavor. Further, teammates can
help moderate self-reactive influences, as illustrated by
the example of Faith encouraging Taylor that “We won’t
[fail].” Finally, proactive control of motivation is en-
hanced when teammates set ambitious goals for each
other, as shown when Clara and Gabriella went beyond
mere functionality of their greenhouse to consider
aesthetics.

Implications for design
Our study demonstrates the robustness of designing for
pluridisciplinarity, in order to leverage students’ interests
to promote their engagement in practices of CT and
STEM. Interest is especially important for elementary-
and middle-school learners, particularly for closing
equity gaps in participation and attainment (Allen et al.,
2019; Maltese & Tai, 2011; Tytler & Osborne, 2012).
Further, the broader the interests that can be drawn
upon, the more resources students can bring to collect-
ive sense-making (Lee & Malyn-Smith, 2020). In the
present study, like the four focal students, many youth
were interested in plants and aesthetics, which helped
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them to initially engage and provided motivation to
make sense of relationships between code, data, and
their physical system. More monodisciplinary framings
could be extended in pluridisciplinary ways, using our
conceptual framework as a basis for disciplinary expan-
sion. In the smart-greenhouse project, a technology-only
disciplinary approach would have included the sensors,
actuators, and microcontrollers; such a model would
have failed to engage students’ demonstrated interests
around arts (aesthetics of LED light strips), biology
(plants), construction (of the greenhouse and how it sup-
ported the technologies), and so on.
At the same time as we urge a move towards pluridis-

ciplinary, we also emphasize the importance of synergies
between disciplines, detailed in the “Curriculum Design”
section. Careful planning of concepts and practices
across disciplines can result in synergies between those
disciplines (Century et al., 2020; Yin et al., 2020). Much
alignment between CT and STEM has already been doc-
umented in major standards and frameworks (K12cs.org,
2016; Lee & Malyn-Smith, 2020; NGSS Lead States,
2013). More work is needed to faithfully integrate arts
into STEM, in ways that go beyond subservient and co-
equal models, in pluralistic ways that are more affective
and social (Bresler, 1995). In particular, the LED strips
of the smart-greenhouse project represented a harmony
of arts (aesthetics of color-coordination and animations),
biology (how plants respond to different wavelengths of
light), physics (relationship between distance and flux),
and more. This harmony inspired some students to take
their greenhouses home, even though the school year
was about to end.
In sum, the present paper extends Bandura’s (1977,

1993, 2001) theorizing on self-efficacy, in directions of
need identified by Schunk and DiBenedetto (2016). It
also builds on and extends previous work in more
monodisciplinary settings, and addresses key elements of
newer consensus frameworks for integrating CT in
STEM disciplines.

Limitations and future directions
We recognize that our findings and implications are sit-
uated within two classrooms, and primarily two student
dyads, of one school in Mills City. Nonetheless, the
culturally and linguistically diverse nature of the setting
offers broader understandings than studies that have
been conducted in more homogenous environments.
Further iterations with the current school, extension to a
second middle school in Mills City, and expansions in
the Western US and beyond will deepen and broaden
our understanding of embedding CT in required K-12
classes (Asante et al., 2021). Also, a transition to BBC
micro:bit will increase accessibility in modality and hard-
ware (as block- and cloud-based).

Another limitation relates to data generation, namely
that participant-researchers sometimes acted as teaching
assistants, which limits the transferability of our findings.
Though triangulation of data helped us to more broadly
understand the lived experiences of adolescents, future
observation protocols will be revised to promote trans-
ferability, especially to settings where only one or two
adults are facilitating per classroom. Recently published
formative and summative instruments, more parsimoni-
ous than those used in the present study, could aid in a
richer data corpus without overly imposing upon stu-
dents’ and teachers’ time and energy (e.g., Kukul & Kara-
tas, 2019; Yin et al., 2020).
Since the iteration in this paper, the research team has

continued to honor the pluridisciplinary nature of the
project, in ways that promote understanding complex
systems, one of five CT integration elements that
emerged from a workshop of 54 researchers and practi-
tioners across grade levels and disciplines (Lee & Malyn-
Smith, 2020, p. 10). To this point we have tended to
focus on perspectives of practitioners more than stu-
dents (Asante et al., 2021; Xu, 2019); this study and fu-
ture work shows promise for deeper understandings of
students. Ultimately, we hope to arrive at a more nu-
anced and dialectical design for the smart-greenhouse
and similarly pluridisciplinary projects.

Conclusion
The present study provides insight into the shorter-term
mechanisms of self-efficacy theory, which has been shown
to connect with mediators and outcomes such as student
engagement, achievement, course choice, and career selec-
tion (Bandura, 1993, 2001; Schunk & DiBenedetto, 2016).
This paper enriches the work that has been done in pre-
post style studies, and it addresses the need for research
on self-efficacy in culturally and linguistically diverse set-
tings (Schunk & DiBenedetto, 2016).
Embedding computational thinking and practices in

required K-12 classes remains a high priority for educa-
tional designers. It will likely remain a priority for the
foreseeable future, as “literally all industry sectors are
impacted by technology innovations” (Lee & Malyn-
Smith, 2020, p. 17). The present study offers findings
that suggest how educational designers and practitioners
can use learning environments to leverage interest in
supporting student engagement and self-efficacy for
computation. Our understandings will inform our future
design and should prove useful to designers in similar
settings. As ubiquitous computing is “all mixed together”
within and between traditional disciplinary boundaries,
the time is ripe for pluridisciplinary spaces – such as
projects with smart greenhouses – as environments for
growing computational literacy.
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