Batson, C. D. (2009). These things called empathy. In J. Decety, & W. Ickes (Eds.), The social neuroscience of empathy. Cambridge: MIT Press.
Google Scholar
Bencze, J.L., Pouliot, C., Pedretti, E. Simonneaux, L., Simonneaux, J. & Zeidler, D.L. (In Press). SAQ, SSI & STSE education: Defending and extending ‘Science-in-Context.’ Cultural Studies in Science Education.
Berkowitz, M.W. (1997). The complete moral person: Anatomy and formation. In DuBois, J.M. (Ed.), Moral issues in psychology: Personalist contributions to selected problems. New York: University Press of America, Inc.
Bossér, U., & Lindahl, M. (2019). Students positioning in the classroom: A study of teacher-student interactions in a socioscientific issue context. Research in Science Education, 49(2), 371-390.
Elgström, O., & Hellstenius, M. (2011). Curriculum debate and policy change. Journal of Curriculum Studies, 43, 717–738.
Article
Google Scholar
Fowler, S., Zeidler, D. L., & Sadler, T. D. (2009). Moral sensitivity in the context of socio-scientific issues in high school science students. International Journal of Science Education, 31, 279–296.
Article
Google Scholar
Gifford, R., & Nilsson, A. (2014). Personal and social factors that influence pro-environmental concern and behaviour: A review. International Journal of Psychology, 49(3), 141–157.
Google Scholar
Gruenewald, D. A., & Smith, G. A. (Eds.) (2008). Place-based education in the global age: Local diversity. New York: Erlbaum.
Google Scholar
Herman, B. C. (2015). The influence of global warming science views and sociocultural factors on willingness to mitigate global warming. Science Education, 1(1), 1–38.
Article
Google Scholar
Herman, B. C. (2018). Students’ environmental NOS views, compassion, intent, and action: Impact of place-based socioscientific issues instruction. Journal of Research in Science Teaching, 55(4), 600–638.
Article
Google Scholar
Herman, B. C., Owens, D. C., Oertli, R. T., Zangori, L. A., & Newton, M. H. (2019). Exploring the complexity of students’ scientific explanations and associated NOS views within a place-based socioscientific issue context. Science and Education On-line first version retrieved 03/15/2019 from: https://doi.org/10.1007/s11191-019-00034-4.
Article
Google Scholar
Herman, B. C., Sadler, T. D., Zeidler, D. L., & Newton, M. H. (2018). A socioscientific issues approach to environmental education. In G. Reis, & J. Scott (Eds.), International perspectives on the theory and practice of environmental education: A reader, Environmental discourses in science education (vol. 3). Cham: Springer.
Google Scholar
Herman, B. C., Zeidler, D. L., & Newton, M. H. (2018). Emotive reasoning through place-based environmental socioscientific issues. Research in Science Education On-line first version retrieved 03/15/2019 from: https://doi.org/10.1007/s11165-018-9764-1.
Hoffman, M. L. (2000). Empathy and moral development: Implications for caring and justice. Cambridge: Cambridge University Press.
Book
Google Scholar
Hoffman, M. L. (2008). Empathy and prosocial behavior. In M. Lewis, J. Haviland-Jones, & L. Barrett (Eds.), Handbook of emotions, (pp. 440–455). New York: Guilford.
Google Scholar
Jack, B. M., Lin, H.-S., & Yore, L. D. (2014). The synergistic effect of affective factors on student learning outcomes. Journal of Research in Science Teaching, 51(8), 1084–1101.
Article
Google Scholar
Jho, H., Yoon, H.-G., & Kim, M. (2014). The relationship of science knowledge, attitude and decision making on socio-scientific issues. Science & Education, 23(5), 1131–1151.
Article
Google Scholar
Kahn, S., & Zeidler, D. L. (2016). Using our heads and HARTSS*: Developing perspective-taking skills for socioscientific reasoning (*humanities, arts, and social sciences). Journal of Science Teacher Education, 27(3), 261–281.
Article
Google Scholar
Kahn, S., & Zeidler, D. L. (2017). A case for the use of conceptual analysis in science education research. Journal of Research in Science Teaching, 54(4), 538–551.
Article
Google Scholar
Kahn, S., & Zeidler, D.L. (2019). A conceptual analysis of perspective taking: Positioning a tangled construct within science education and beyond. Science & Education, 28, 605-638.
Khishfe, R. (2012). Nature of science and decision-making. International Journal of Science Education, 34(1), 67–100.
Article
Google Scholar
Kinslow, A. T. (2018). The development and implementation of a heuristic for teaching reflective scientific skepticism within a socio-scientific issue instructional framework. Unpublished dissertation. Columbia: University of Missouri.
Kinslow, A. T., Sadler, T. D., & Nguyen, H. T. (2019). Socio-scientific reasoning and environmental literacy in a field-based ecology class. Environmental Education Research, 1–23 On-line first version retrieved 03/15/2019 from: https://doi.org/10.1080/13504622.2018.1442418.
Article
Google Scholar
Konrath, S., O’Brien, E., & Hsing, C. (2011). Changes in dispositional empathy in American college students over time: A meta-analysis. Personality and Social Psychology Review, 15(2), 180–198.
Article
Google Scholar
Kormos, C., & Gifford, R. (2014). The validity of self-report measures of proenvironmental behavior: A metaanalytic review. Journal of Environmental Psychology, 40, 359–371.
Article
Google Scholar
Lee, H., Kyunghee, C., Kim, S., Jungsook, Y., Krajcik, J. S., Herman, B. C., & Zeidler, D. L. (2013). Socioscientific issues as a vehicle for promoting character and values as global citizens. International Journal of Science Education, 35(12), 2079–2113.
Article
Google Scholar
Lindahl, M. G., Folkesson, A.-M., & Zeidler, D. L. (2019). Students’ recognition of educational demands in the context of a socioscientific issues curriculum. Journal of Research in Science Teaching. (Early view. https://doi.org/10.1002/tea.2154.
Martin, J., Sokol, B. W., & Elfers, T. (2008). Taking and coordinating perspectives: From prereflective interactivity, through reflective intersubjectivity, to metareflective sociality. Human Development, 51, 294–317. https://doi.org/10.1159/000170892.
Article
Google Scholar
National Research Council (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. In Committee on a conceptual framework for new K-12 science education standards. Board on science education, division of behavioral and social sciences and education. Washington, DC: The National Academies Press.
Google Scholar
NGSS Lead States (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.
Google Scholar
Romine, W. L., Sadler, T. D., & Kinslow, A. T. (2017). Assessment of scientific literacy: Development and validation of the quantitative assessment of socio-scientific reasoning (QuASSR). Journal of Research in Science Teaching, 54, 274–295. https://doi.org/10.1002/tea.21368.
Article
Google Scholar
Sadler, T. D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. Studies in Science Education, 45(1), 1–42.
Article
Google Scholar
Sadler, T. D., Barab, S., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371–391.
Article
Google Scholar
Sadler, T. D., Klosterman, M. L., & Topcu, M. S. (2011). Learning science content and socio-scientific reasoning through classroom explorations of global climate change. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom: Teaching, learning and research, (pp. 45–77). Dordrecht: Springer.
Chapter
Google Scholar
Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42(1), 112–138.
Article
Google Scholar
Selman, R. L. (1971). Taking another’s perspective: Role-taking development in early childhood. Child Development, 42, 1721–1734. https://doi.org/10.2307/1127580.
Article
Google Scholar
Selman, R. L. (1977). A structural–developmental model of social cognition: Implications for intervention research. The Counseling Psychologist, 6(4), 3–6. https://doi.org/10.1177/001100007700600403.
Article
Google Scholar
Semken, S., & Freeman, C. B. (2008). Sense of place in the practice and assessment of place-based science teaching. Science Education, 92(2), 1042–1057.
Article
Google Scholar
Simonneaux, L., & Simonneaux, J. (2009). Socio-scientific reasoning influenced by identities. Cultural Studies in Science Education, 4(3), 705–711.
Article
Google Scholar
Sobel, D. (2004). Place-based education: Connecting classrooms and communities. Great Barrington: The Orion Society.
Google Scholar
Tsai, C.-Y., & Jack, B. M. (2019). Antecedent factors influencing ethic-related social and socio-scientific learning enjoyment. International Journal of Science Education On-line first version retrieved 03/29/2019 from: https://doi.org/10.1080/09500693.2019.1595215.
Article
Google Scholar
Venville, G. J., & Dawson, V. M. (2010). The impact of a classroom intervention on grade 10 students’ argumentation skills, informal reasoning, and conceptual understanding of science. Journal of Research in Science Teaching, 47(8), 952–977.
Google Scholar
Womack, A. J. (2019). Development and multi-tiered analysis of a socio-scientific reasoning assessment. In Application of computer automated scoring and Rasch analysis. University of Missouri Unpublished dissertation.
Zeidler, D., Herman, B. C., Ruzek, M., Linder, A., & Lin, S. S. (2013). Cross-cultural epistemological orientations to socioscientific issues. Journal of Research in Science Teaching, 50(3), 251–283.
Article
Google Scholar
Zeidler, D. L. (2003). The role of moral reasoning on socioscientific issues and discourse in science education. The Netherlands: Kluwer Academic Press.
Book
Google Scholar
Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research and practice. In N. G. Lederman, & S. K. Abell (Eds.), Handbook of research on science education, volume II, (pp. 697–726). New York: Routledge.
Google Scholar
Zeidler, D. L. (2016). STEM education: A deficit framework for the 21st century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11–26.
Article
Google Scholar
Zeidler, D. L., Herman, B. C., Clough, M. P., Olson, J. K., Kahn, S., & Newton, M. (2016). Humanitas emptor: Reconsidering recent trends and policy in science teacher education. Journal of Science Teacher Education, 25(5), 465–476.
Article
Google Scholar
Zeidler, D. L., & Kahn, S. (2014). It’s debatable: Using Socioscientific issues to develop scientific literacy, K-12. Arlington: National Science Teachers Association Press.
Google Scholar
Zeidler, D. L., Sadler, T. D., Applebaum, S., & Callahan, B. E. (2009). Advancing reflective judgment through socio-scientific issues. Journal of Research in Science Teaching, 46, 74–101.
Article
Google Scholar
Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002). Tangled up in views: Beliefs in the nature of science and responses to socio-scientific dilemmas. Science Education, 86, 343–367.
Article
Google Scholar