Ajaja, P. O. (2013). Coding and analysing behaviour strategies of instructors in university science laboratories to improve science teachers training. International Education Studies, 6(1), 63–73. https://doi.org/10.5539/ies.v6n1p63.
Article
Google Scholar
Aktan, B., Bohus, C. A., Crowl, L. A., & Shor, M. H. (1996). Distance learning applied to control engineering laboratories. IEEE Transactions on Education, 39(3), 320–326. https://doi.org/10.1109/13.538754.
Article
Google Scholar
American Association for the Advancement of Science (2013). Describing and measuring undergraduate STEM teaching practices. Washington, DC: https://cgsnet.org/describing-and-measuring-undergraduate-stem-teaching-practices. Retrieved 25 Sept 2019.
Biggs, J. B. (2011). Teaching for quality learning at university: What the student does. Maidenhead: McGraw-Hill Education (UK).
Blickenstaff, J. C. (2010). A framework for understanding physics instruction in secondary and college courses. Research Papers in Education, 25(2), 177–200.
Article
Google Scholar
Bloome, D. (1989). Locating the learning of reading and writing in classrooms: Beyond deficit, difference, and effectiveness models. In Locating learning: Ethnographic perspectives on classroom research, (pp. 87–114).
Google Scholar
Böhne, A., Faltin, N., & Wagner, B. (2007). Distributed group work in a remote programming laboratory - a comparative study. International Journal of Engineering Education, 23(1), 162–170.
Google Scholar
Böhne, A., Rütters, K., & Wagner, B. (2004). Evaluation of tele-tutorial support in a remote programming laboratory. In Paper presented at the 2004 American Society for Engineering Education Annual Conference and Exposition, Salt Lake City, Utah https://peer.asee.org/13115. Retrieved 25 Sept 2019.
Google Scholar
Botero, M. L., Selmer, A., Watson, R., Bansal, M., & Kraft, M. (2016). Cambridge weblabs: A process control system using industrial standard SIMATIC PCS 7. Education for Chemical Engineers, 16, 1–8. https://doi.org/10.1016/j.ece.2016.04.001.
Article
Google Scholar
Bowers, C. A., & Flinders, D. (1990). Responsive teaching: An ecological approach to classroom patterns of language, culture, and thought. New York: Teachers College Press.
Google Scholar
Bright, C., Lindsay, E., Lowe, D., Murray, S., & Liu, D. (2008). Factors that impact learning outcomes in remote laboratories. In Paper presented at the Ed-Media 2008: World Conference on Educational Multimedia, Hypermedia And Telecommunications, Vienna, Austria.
Google Scholar
Brinson, J. R. (2015). Learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) laboratories: A review of the empirical research. Computers & Education, 87, 218–237. https://doi.org/10.1016/j.compedu.2015.07.003.
Article
Google Scholar
Cohen, D. K., & Ball, D. L. (1999). Instruction, capacity, and improvement (CPRE-RR-43). Philadelphia: https://www.cpre.org/sites/default/files/researchreport/783_rr43.pdf. Retrieved 26 Sept 2019.
Cole, M., & Engeström, Y. (1993). A cultural-historical approach to distributed cognition. In G. Salomon (Ed.), Distributed cognitions: Psychological and educational considerations, (pp. 1–46). New York: Cambridge University Press.
Google Scholar
Cole, R. S., Becker, N., & Stanford, C. (2014). Discourse analysis as a tool to examine teaching and learning in the classroom. In Tools of chemistry education research, (vol. 1166, pp. 61–81). New York: Oxford University Press.
Cooper, M., & Ferreira, J. M. M. (2009). Remote laboratories extending access to science and engineering curricular. IEEE Transactions on Learning Technologies, 2(4), 342–353. https://doi.org/10.1109/tlt.2009.43.
Article
Google Scholar
Corter, J. E., Esche, S. K., Chassapis, C., Ma, J., & Nickerson, J. V. (2011). Process and learning outcomes from remotely-operated, simulated, and hands-on student laboratories. Computers & Education, 57(3), 2054–2067. https://doi.org/10.1016/j.compedu.2011.04.009.
Article
Google Scholar
De Jong, T. (2006). Technological advances in inquiry learning. Science, 312(5773), 532–533. https://doi.org/10.1126/science.1127750.
Article
Google Scholar
De Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305–308. https://doi.org/10.1126/science.1230579.
Article
Google Scholar
de la Torre, L., Guinaldo, M., Heradio, R., & Dormido, S. (2015). The ball and beam system: A case study of virtual and remote lab enhancement with Moodle. IEEE Transactions on Industrial Informatics, 11(4), 934–945. https://doi.org/10.1109/tii.2015.2443721.
Article
Google Scholar
de la Torre, L., Heradio, R., Jara, C. A., Sanchez, J., Dormido, S., Torres, F., & Candelas, F. A. (2013). Providing collaborative support to virtual and remote laboratories. IEEE Transactions on Learning Technologies, 6(4), 312–323. https://doi.org/10.1109/TLT.2013.20.
Article
Google Scholar
DiSessa, A. A. (2001). Changing minds: Computers, learning, and literacy. Cambridge: MIT Press.
Google Scholar
Faulconer, E. K., & Gruss, A. B. (2018). A review to weigh the pros and cons of online, remote, and distance science laboratory experiences. The International Review of Research in Open and Distributed Learning, 19(2). https://doi.org/10.19173/irrodl.v19i2.3386.
Fennema, E., & Sherman, J. A. (1976). Fennema-Sherman mathematics attitudes scales: Instruments designed to measure attitudes toward the learning of mathematics by females and males. Journal for Research in Mathematics Education, 7(5), 324–326. https://doi.org/10.2307/748467.
Article
Google Scholar
Flaherty, A., O’Dwyer, A., Mannix-McNamara, P., & Leahy, J. J. (2017). Evaluating the impact of the “Teaching as a chemistry laboratory graduate teaching assistant” program on cognitive and psychomotor verbal interactions in the laboratory. Journal of Chemical Education, 94(12), 1831–1843. https://doi.org/10.1021/acs.jchemed.7b00370.
Article
Google Scholar
Fraser, B. J., Giddings, G. J., & McRobbie, C. J. (1992). Assessment of the psychosocial environment of university science laboratory classrooms: A crossnational study. Higher Education, 24(4), 431–451. https://doi.org/10.1007/bf00137241.
Article
Google Scholar
Garcia, P. A. (2002). Interaction, distributed cognition and web-based learning. In Paper presented at the E-Learn: world conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2002, Montreal, Canada https://www.learntechlib.org/p/9371. Retrieved 26 Sept 2019.
Google Scholar
Gee, J. P., & Green, J. L. (1998). Discourse analysis, learning, and social practice: A methodological study. Review of Research in Education, 23, 119–169. https://doi.org/10.2307/1167289.
Article
Google Scholar
Glaser, B. G. (1965). The constant comparative method of qualitative analysis. Social Problems, 12(4), 436–445. https://doi.org/10.2307/798843.
Article
Google Scholar
Good, J., Colthorpe, K., Zimbardi, K., & Kafer, G. (2015). Research and teaching: The roles of mentoring and motivation in student teaching assistant interactions and in improving experience in first-year biology laboratory classes. Journal of College Science Teaching, 44(4), 1–11. https://doi.org/10.2505/4/jcst15_044_04_88.
Article
Google Scholar
Gresser, P. W. (2006). A study of social interaction and teamwork in reformed physics laboratories. (Doctoral dissertation), University of Maryland https://drum.lib.umd.edu/handle/1903/3362. Retrieved 26 Sept 2019. Available from ProQuest Dissertations & Theses Global.
Henry, J. (2000). 24× 7: Lab experiments access on the web all the time. In Paper presented at the ASEE Annual Conference Proceedings, St. Louis, Missouri https://peer.asee.org/8147. Retrieved 26 Sept 2019.
Google Scholar
Herrington, D. G., & Nakhleh, M. B. (2003). What defines effective chemistry laboratory instruction? teaching assistant and student perspectives. Journal of Chemical Education, 80(10), 1197. https://doi.org/10.1021/ed080p1197.
Article
Google Scholar
Hillman, D. C. A., Willis, D. J., & Gunawardena, C. N. (1994). Learner-interface interaction in distance education: An extension of contemporary models and strategies for practitioners. American Journal of Distance Education, 8(2), 30–42. https://doi.org/10.1080/08923649409526853.
Article
Google Scholar
Hilosky, A., Sutman, F., & Schmuckler, J. (1998). Is laboratory based instruction in beginning college-level chemistry worth the effort and expense? Journal of Chemical Education, 75(1), 100. https://doi.org/10.1021/ed075p100.
Article
Google Scholar
Hofstein, A., Levy Nahum, T., & Shore, R. (2001). Assessment of the learning environment of inquiry-type laboratories in high school chemistry. Learning Environments Research, 4(2), 193–207. https://doi.org/10.1023/a:1012467417645.
Article
Google Scholar
Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28–54. https://doi.org/10.1002/sce.10106.
Article
Google Scholar
Högström, P., Ottander, C., & Benckert, S. (2010). Lab work and learning in secondary school chemistry: The importance of teacher and student interaction. Research in Science Education, 40(4), 505–523. https://doi.org/10.1007/s11165-009-9131-3.
Article
Google Scholar
Johnstone, A., & Al-Shuaili, A. (2001). Learning in the laboratory: Some thoughts from the literature. University Chemistry Education, 5(2), 42–51.
Google Scholar
Kamruzzaman, M. M., Wang, M., Jiang, H., He, W., & Liu, X. (2015). A web-based remote laboratory for the college of optoelectronic engineering of online universities. In Paper presented at the 2015 Optoelectronics Global Conference (OGC) https://ieeexplore.ieee.org/document/7336830. Retrieved 26 Sept 2019.
Google Scholar
Kiboss, J. K. (1997). An evaluation of teacher/student verbal and non-verbal behaviours in computer augmented physics laboratory classrooms in Kenya. African Journal of Research in Mathematics, Science and Technology Education, 1(1), 65–76. https://doi.org/10.1080/10288457.1997.10756089.
Article
Google Scholar
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs: Prentice-Hall.
Google Scholar
Komorek, M., & Kattmann, U. (2008). The model of educational reconstruction. In U. R. Silke Mikelskis-Seifert, & M. Brückmann (Eds.), Four decades of research in science education–from curriculum development to quality improvement, (pp. 171–188). Münster: Waxmann.
Google Scholar
Krystyniak, R. A., & Heikkinen, H. W. (2007). Analysis of verbal interactions during an extended, open-inquiry general chemistry laboratory investigation. Journal of Research in Science Teaching, 44(8), 1160–1186. https://doi.org/10.1002/tea.20218.
Article
Google Scholar
Kumpulainen, K., & Mutanen, M. (1999). The situated dynamics of peer group interaction: An introduction to an analytic framework. Learning and Instruction, 9(5), 449–473. https://doi.org/10.1016/S0959-4752(98)00038-3.
Article
Google Scholar
Kyle, W. C., Penick, J. E., & Shymansky, J. A. (1979). Assessing and analyzing the performance of students in college science laboratories. Journal of Research in Science Teaching, 16(6), 545–551. https://doi.org/10.1002/tea.3660160608.
Article
Google Scholar
Le Roux, G. A., Reis, G. B., de Jesus, C. D., Giordano, R. C., Cruz, A. J., Moreira, P. F., … Loureiro, L. V. (2009). Cooperative Weblab: A tool for cooperative learning in chemical engineering in a global environment. Computer Aided Chemical Engineering, 27, 2139–2144. https://doi.org/10.1016/S1570-7946(09)70747-3.
Article
Google Scholar
Lehman, J. R. (1990). Students’ verbal interactions during chemistry laboratories. School Science and Mathematics, 90(2), 142–150. https://doi.org/10.1111/j.1949-8594.1990.tb12006.x.
Article
Google Scholar
Lindsay, E. D., & Good, M. C. (2005). Effects of laboratory access modes upon learning outcomes. IEEE Transactions on Education, 48(4), 619–631. https://doi.org/10.1109/TE.2005.852591.
Article
Google Scholar
Lindsay, E. D., Naidu, S., & Good, M. C. (2007). A different kind of difference: Theoretical implications of using technology to overcome separation in remote laboratories. International Journal of Engineering Education, 23(4), 772–779. https://doi.org/10.3189/172756499781821562.
Article
Google Scholar
Lowe, D., Newcombe, P., & Stumpers, B. (2012). Evaluation of the use of remote laboratories for secondary school science education. Research in Science Education, 43(3), 1197–1219. https://doi.org/10.1007/s11165-012-9304-3.
Article
Google Scholar
Lund, T. J., Pilarz, M., Velasco, J. B., Chakraverty, D., Rosploch, K., Undersander, M., & Stains, M. (2015). The best of both worlds: Building on the COPUS and RTOP observation protocols to easily and reliably measure various levels of reformed instructional practice. CBE-Life Sciences Education, 14(2), ar18. https://doi.org/10.1187/cbe.14-10-0168.
Article
Google Scholar
Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys (CSUR), 38(3), 7.
Article
Google Scholar
Mercer, N., Littleton, K., & Wegerif, R. (2004). Methods for studying the processes of interaction and collaborative activity in computer-based educational activities. Technology, Pedagogy and Education, 13(2), 195–212. https://doi.org/10.1080/14759390400200180.
Article
Google Scholar
Miller, K., Brickman, P., & Oliver, J. S. (2014). Enhancing teaching assistants’ (TAs’) inquiry teaching by means of teaching observations and reflective discourse. School Science and Mathematics, 114(4), 178–190. https://doi.org/10.1111/ssm.12065.
Article
Google Scholar
Moore, M. G. (1989). Editorial: Three types of interaction. American Journal of Distance Education, 3(2), 1–7. https://doi.org/10.1080/08923648909526659.
Article
Google Scholar
Nakhleh, M. B., Polles, J., & Malina, E. (2002). Learning chemistry in a laboratory environment. In J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, & J. H. Van Driel (Eds.), Chemical education: Towards research-based practice, (pp. 69–94). New York: Springer.
Google Scholar
Nickerson, J. V., Corter, J. E., Esche, S. K., & Chassapis, C. (2007). A model for evaluating the effectiveness of remote engineering laboratories and simulations in education. Computers & Education, 49(3), 708–725. https://doi.org/10.1016/j.compedu.2005.11.019.
Article
Google Scholar
Ocumpaugh, J. (2015). Baker Rodrigo Ocumpaugh monitoring protocol (BROMP) 2.0 technical and training manual. http://penoy.admu.edu.ph/~alls/wp-content/uploads/2015/02/BROMP_2.0_Final-libre.pdf. Retrieved 27 Sept 2019.
Google Scholar
Ogot, M., Elliott, G., & Glumac, N. (2003). An assessment of in-person and remotely operated laboratories. Journal of Engineering Education, 92(1), 57. https://doi.org/10.1002/j.2168-9830.2003.tb00738.x.
Article
Google Scholar
Ogunniyi, M., & Ramorogo, G. (1994). Relative effects of a micro-teaching programme on pre-service science teachers’ classroom behaviours. Southern African Journal of Mathematics and Science Education, 1(2), 25–36.
Google Scholar
Okebukola, P. A. (1984). In search of a more effective interaction pattern in biology laboratories. Journal of Biological Education, 18(4), 305–308. https://doi.org/10.1080/00219266.1984.9654661.
Article
Google Scholar
Oliveira, A. W., & Sadler, T. D. (2008). Interactive patterns and conceptual convergence during student collaborations in science. Journal of Research in Science Teaching, 45(5), 634–658. https://doi.org/10.1002/tea.20211.
Article
Google Scholar
Orduña, P., Almeida, A., López-De-Ipiña, D., & Garcia-Zubia, J. (2014). Learning analytics on federated remote laboratories: Tips and techniques. In Paper presented at the 2014 IEEE Global Engineering Education Conference (EDUCON) https://ieeexplore.ieee.org/document/6826107. Retrieved 27 Sept 2019.
Google Scholar
Orduña, P., Garbi Zutin, D., Govaerts, S., Lequerica Zorrozua, I., Bailey, P. H., Sancristobal, E., … Garcia-Zubia, J. (2015). An extensible architecture for the integration of remote and virtual laboratories in public learning tools. IEEE Journal of Latin-American Learning Technologies (IEEE-RITA), 10(4), 223–233. https://doi.org/10.1109/RITA.2015.2486338.
Article
Google Scholar
Paul, S., & Ray, S. (2013). Cultural diversity, group interaction, communication convergence, and intra-group conflict in global virtual teams: Findings from a laboratory experiment. In Paper presented at the 2013 46th Hawaii International Conference on System Sciences, Wailea, Maui, HI, USA https://ieeexplore.ieee.org/document/6479876. Retrieved 27 Sept 2019.
Google Scholar
Potvin, P., & Hasni, A. (2014). Interest, motivation and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85–129. https://doi.org/10.1080/03057267.2014.881626.
Article
Google Scholar
Poulsen, C., Kouros, C., d'Apollonia, S., Abrami, P. C., Chambers, B., & Howe, N. (1995). A comparison of two approaches for observing cooperative group work. Educational Research and Evaluation, 1(2), 159–182. https://doi.org/10.1080/1380361950010203.
Article
Google Scholar
Power, C. (1977). A critical review of science classroom interaction studies. Studies in Science Education, 4(1), 1–30. https://doi.org/10.1080/03057267708559844.
Article
Google Scholar
Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., … Soloway, E. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13(3), 337–386. https://doi.org/10.1207/s15327809jls1303_4.
Article
Google Scholar
Roychoudhury, A., & Roth, W.-M. (1996). Interactions in an open-inquiry physics laboratory. International Journal of Science Education, 18(4), 423–445. https://doi.org/10.1080/0950069960180403.
Article
Google Scholar
Ruf, T., & Ploetzner, R. (2014). One click away is too far! How the presentation of cognitive learning aids influences their use in multimedia learning environments. Computers in Human Behavior, 38, 229–239. https://doi.org/10.1016/j.chb.2014.06.002.
Article
Google Scholar
Rybczynski, S. M., & Schussler, E. E. (2013). Effects of instructional model on student attitude in an introductory biology laboratory. International Journal for the Scholarship of Teaching and Learning, 7(2), n2. https://doi.org/10.20429/ijsotl.2013.070222.
Article
Google Scholar
Sadler, T. D., Puig, A., & Trutschel, B. K. (2011). Laboratory instructional practices inventory: A tool for assessing the transformation of undergraduate laboratory instruction. Journal of College Science Teaching, 41(1), 25–31.
Google Scholar
Sauter, M., Uttal, D. H., Rapp, D. N., Downing, M., & Jona, K. (2013). Getting real: The authenticity of remote labs and simulations for science learning. Distance Education, 34(1), 37–47. https://doi.org/10.1080/01587919.2013.770431.
Article
Google Scholar
Saxena, S., & Satsangee, S. P. (2014). Offering remotely triggered, real-time experiments in electrochemistry for distance learners. Journal of Chemical Education, 91(3), 368–373. https://doi.org/10.1021/ed300349t.
Article
Google Scholar
Scalise, K., Timms, M., Moorjani, A., Clark, L., Holtermann, K., & Irvin, P. S. (2011). Student learning in science simulations: Design features that promote learning gains. Journal of Research in Science Teaching, 48(9), 1050–1078.
Article
Google Scholar
Scanlon, E., Morris, E., Di Paolo, T., & Cooper, M. (2002). Contemporary approaches to learning science: Technologically-mediated practical work. Studies in Science Education, 38(1), 73–114. https://doi.org/10.1080/03057260208560188.
Article
Google Scholar
Scheucher, B., Bayley, P., Gütl, C., & Harward, J. (2009). Collaborative virtual 3D environment for internet-accessible physics experiments. International Journal of Online Engineering, 5(REV 2009), 65–71. https://doi.org/10.3991/ijoe.v5s1.1014.
Article
Google Scholar
Stang, J. B., Barker, M., Perez, S., Ives, J., & Roll, I. (2016). Active learning in pre-class assignments: Exploring the use of interactive simulations to enhance reading assignments. In Paper presented at the Physics Education Research Conference Proceedings, Sacramento, CA https://www.per-central.org/items/detail.cfm?ID=14263. Retrieved 27 Sept 2019.
Google Scholar
Stang, J. B., & Roll, I. (2014). Interactions between teaching assistants and students boost engagement in physics labs. Physical Review Special Topics - Physics Education Research, 10(2), 020117. https://doi.org/10.1103/PhysRevSTPER.10.020117.
Article
Google Scholar
Sutton, L. A. (2001). The principle of vicarious interaction in computer-mediated communications. International Journal of Educational Telecommunications, 7(3), 223–242 https://www.learntechlib.org/primary/p/9534/. Retrieved 19 Sept 2019.
Google Scholar
Tamir, P., Nussinovitz, R., & Friedler, Y. (1982). The design and use of a practical tests assessment inventory. Journal of Biological Education, 16(1), 42–50. https://doi.org/10.1080/00219266.1982.9654417.
Article
Google Scholar
Tirado-Morueta, R., Sánchez-Herrera, R., Márquez-Sánchez, M. A., Mejías-Borrero, A., & Andujar-Márquez, J. M. (2018). Exploratory study of the acceptance of two individual practical classes with remote labs. European Journal of Engineering Education, 43(2), 278–295. https://doi.org/10.1080/03043797.2017.1363719.
Article
Google Scholar
Tobin, K., & Fraser, B. J. (1998). Qualitative and quantitative landscapes of classroom learning environments. In B. J. Fraser, & K. G. Tobin (Eds.), International handbook of science education, (vol. 1, pp. 623–640). Dordrecht: Kluwer.
Chapter
Google Scholar
Velasco, J. B., Knedeisen, A., Xue, D., Vickrey, T. L., Abebe, M., & Stains, M. (2016). Characterizing instructional practices in the laboratory: The laboratory observation protocol for undergraduate STEM. Journal of Chemical Education, 93(7), 1191–1203. https://doi.org/10.1021/acs.jchemed.6b00062.
Article
Google Scholar
Volpentesta, A. P. (2015). A framework for human interaction with mobiquitous services in a smart environment. Computers in Human Behavior, 50, 177–185. https://doi.org/10.1016/j.chb.2015.04.003.
Article
Google Scholar
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. In M. Cole, V. John-Steiner, & E. Souberman (Eds.). Cambridge: Harvard University Press.
Google Scholar
Wei, J., Mocerino, M., Treagust, D. F., Lucey, A. D., Zadnik, M. G., Lindsay, E. D., & Carter, D. J. (2018). Developing an understanding of undergraduate student interactions in chemistry laboratories. Chemistry Education Research and Practice, 19(4), 1186–1198. https://doi.org/10.1039/C8RP00104A.
Article
Google Scholar
West, E. A., Paul, C. A., Webb, D., & Potter, W. H. (2013). Variation of instructor-student interactions in an introductory interactive physics course. Physical Review Special Topics - Physics Education Research, 9(1), 010109. https://doi.org/10.1103/PhysRevSTPER.9.010109.
Article
Google Scholar
Wubbels, T. (1993). Teacher-student relationships in science and mathematics classes. In B. J. Fraser (Ed.), Research implications for science and mathematics teachers, (vol. 1, pp. 65–73). Perth: Curtin University of Technology.
Google Scholar
Xu, H., & Talanquer, V. (2013). Effect of the level of inquiry on student interactions in chemistry laboratories. Journal of Chemical Education, 90(1), 29–36. https://doi.org/10.1021/ed3002946.
Article
Google Scholar
Zacharia, Z. C., Manoli, C., Xenofontos, N., de Jong, T., Pedaste, M., van Riesen, S. A., … Tsourlidaki, E. (2015). Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: A literature review. Educational Technology Research and Development, 63(2), 257–302. https://doi.org/10.1007/s11423-015-9370-0.
Article
Google Scholar