Education researchers have called for greater opportunities for educators to learn about evidence-based instructional practices in collaboration with others in their institutional communities (Bouwma-Gearhart, 2012a; Henderson, Beach, & Finkelstein, 2011; National Academies of Sciences, Engineering, and Medicine, 2016). We investigated how STEM faculty engage in teaching-related conversations within the context of an institution of higher education with an ongoing instructional improvement initiative, as well as the extent discussion partners changed over time. Participants communicated various rationales for engaging in teaching-related conversations, suggesting how rules for appropriate behavior, roles and associated duties, and community-related aspects might shape STEM faculty engagement in teaching-related conversations in general and in light of an instructional improvement initiative. We found that faculty were motivated to engage in teaching-related conversations to compare teaching practices and find teaching-related support in comfortable and safe conversations and that the initiative helped create an interdisciplinary, teaching-focused community they may have felt they lacked. Some participants even desired more initiative-related events, continued initiative-related events, and more units’ involvement in the initiative, further suggesting that the initiative spoke to faculty desires to grow their knowledge of, and connect with, the teaching-interested community at their institution. We also learned that faculty were aware of many different tools they could use (and were using) to engage in teaching-related conversations, including those within STEM units, inside the institution, and outside the institution. Many participants felt the initiative complemented existing teaching/improvement efforts, although some felt confusion or expressed exhaustion with respect to the numerous available tools for teaching improvement.
To illuminate how teaching-related discussion networks changed over the life of an initiative, we used social network analysis to compare the cohesiveness, or interconnectedness, of faculty networks in 2014 (shortly after the initiative was implemented) and 2017 (about three years after the initiative was implemented). Results suggest that the 2017 network was more cohesive than the 2014 network, indicating that teaching-related knowledge could be more efficiently shared throughout the community compared to when the initiative was implemented. We also found that participants, in both 2014 and 2017, talked with more faculty in their units than outside of their units and that most participants experienced different changes in terms of with whom they talked about teaching. However, comparing changes in the unit affiliation of discussion partners showed no noticeable trends representing all faculty (e.g., not all participants reported talking to more discussion partners outside of their unit in 2017 than in 2014).
Salient system tensions potentially inhibiting teaching-related conversations
We now turn to a discussion of system tensions that might impact teaching-related conversations and propose recommendations for stakeholders.
STEM faculty have autonomy with respect to teaching practices
Many participants reported great autonomy with how to teach, which may be particularly true for those teaching upper-division/graduate-level courses. This reality may inhibit conversations specifically about teaching practices since there is not a need to discuss, learn, and implement specific pedagogy, such as evidence-based instructional practices. At the same time, some participants reported having little autonomy over what to teach, sometimes due to the need to coordinate courses with other instructors or institutions. This suggests that faculty might be more inclined to have teaching-related conversations when they feel that content needs to be aligned.
We speculate that conversations about teaching practices may also be more effort-intensive since they might necessitate faculty elucidate teaching rationales to explain or justify how they teach. Pedagogical training is likely varied amongst faculty and faculty may have different comfort levels in terms of engaging in conversations about teaching practices, particularly if they perceive threats to acknowledging a lack of adequate teaching-related knowledge. This might be particularly true for faculty whose perception of institution or unit climate, culture, or norms leads them to conclude that teaching-related conversations are not supported. Thus, talking with community members about aligning course content may be an easier conversation in which to engage STEM faculty since it may not or may limitedly involve discussion about how to teach course content.
This tension provides insight into our social network findings. In both 2017 and 2014, participants reported more discussions with community members within their units than outside of their units and we expect that intra-unit conversations might be focused on aligning content because faculty might have to coordinate curriculum and may be more comfortable having these types of conversations. Similar findings in previous research on the same initiative supports this interpretation: STEM faculty members tend to talk about day-to-day needs and not necessarily system-level topics that influence teaching practice (Quardokus Fisher, Sitomer, Bouwma-Gearhart, & Koretsky, 2019).
Community members have varying levels of interest in teaching-related improvements
Participants reported working in a community where colleagues were diversely interested in teaching-related improvements. Faculty spoke about engaging in teaching-related discussions with community members who were interested in teaching, valued teaching, or wanted to know how to implement teaching improvements. These types of community members, our participants suggested, seemed more approachable for teaching-related conversations. Also, those with a professional position focused on teaching might afford teaching-related conversations: If there are formal expectations that a faculty member’s main efforts should be delivering quality teaching to students (e.g., as it might be for fixed-term faculty, faculty specifically coordinating courses, etc.), a faculty member may be more inclined to seek out and participate in teaching-related conversations. Conversely, some members in the community were perceived as only willing to lecture, possessing little teaching-related knowledge and, at times, unable to engage in civil conversations about teaching improvements. These types of community members, our participants suggested, generally inhibited teaching-related conversations.
Our 2014 and 2017 networks show with whom STEM faculty talk about teaching-related topics and may identify community members who generally welcome teaching-related conversations. Our 2014 and 2017 social network analyses (via decreases in average path length and diameter over time) suggest enhanced community interconnectedness and, thus, enhanced ability to expediently share teaching-related information among involved faculty. Considering these findings and the many participant excerpts on how the initiative helped create an interdisciplinary, teaching-focused community, we believe the initiative, amongst a variety of other instructional improvement efforts, helped faculty who wanted to engage in teaching-related conversations gain a better awareness of with whom they could connect.
Varying levels of support are typically given to STEM faculty to engage in teaching-related conversations
Participants had varied perceptions about the amount of support they felt to engage in teaching-related conversations, which likely influences engagement in teaching-related conversations. In some instances, participants generally indicated a ‘culture’ in academia affecting teaching-related conversations, although specific aspects of culture were not often specified. Others indicated more detailed and localized ‘climate’ or ‘norms’ (e.g., administrators supporting teaching-related conversations) that they felt influenced conversations. This nuance is worth considering because factors associated with climate (e.g., a current department chair) are potentially quicker and easier to change than those comprising organizational culture (e.g., faculty promotion and tenure-related norms) (Walter et al., 2014).
Relatedly, participants suggested that administrative support for teaching improvements and/or teaching-related conversations could help foster teaching discussions. This highlights the powerful role administrators play, in terms of supporting faculty engagement in teaching-related conversations. Our data suggest that if administrators promoted/implemented policies, or even informally supported educators’ engagement in teaching-related conversations and instructional improvement efforts (e.g., a department head commending faculty efforts to incorporate evidence-based instructional practices during a department meeting), faculty might be more inclined to engage in teaching-related conversations.
Furthermore, some faculty perceived working in roles that did not support teaching-related conversations. For example, participants reported having too little time to spend on teaching, suggesting that other aspects of their roles might be privileged over teaching. Also, some faculty suggested that there may be a perception that teaching-related improvements and/or engaging in teaching-related conversations were simply not a part of, or not an important part of, their roles. Last, one faculty member commented on how late course assignments inhibited teaching-related conversations, suggesting that simply notifying faculty about teaching assignments earlier could support engagement in teaching-related conversations.
When we consider these findings in light of the social networks, we note how density and centralization did not change between 2014 and 2017. If density increased in 2017, it might suggest faculty increased their numbers of discussion partners. Little change in density might be likely because, as our interviewees indicated, STEM faculty are busy or prioritize other responsibilities, and thus might be limited in the number of community members with whom they connect. Additionally, STEM faculty might feel inhibited to increase their teaching-related discussion partners because some may believe that engaging in teaching-related improvements is unsupported by their roles and/or the culture/climate of their workplace.
STEM faculty may lack inclusive and judgment-free spaces to talk about teaching
A couple of participants indicated that not all opportunities to talk about teaching were inclusive and judgment-free. One of our participants hinted at feeling like an outsider, since they identify with a gender underrepresented in STEM/academia, explaining that this dissuaded them from contributing to conversations about teaching practices and experiences. Perhaps this should not be surprising, as previous research has noted that educators with identities underrepresented in STEM often face discrimination or hostile work environments (National Academies of Sciences, Mathematics, and Engineering, 2018). Also, one participant suggested that STEM faculty might want to hide teaching-related issues or a lack of teaching experience. This participant further speculated that this might keep some community members from participating in the initiative. These perspectives suggest ‘rules’ inhibiting all community members from participating in teaching-related conversations and ‘rules’ describing the degree they can openly share teaching knowledge with community members.
Recommendations for stakeholders, towards fostering faculty communication around instruction
Looking across the results of our research questions and tensions potentially inhibiting teaching-related conversations helps us suggest recommendations for those designing and implementing instructional improvement initiatives as well as unit leaders and STEM faculty. This is particularly true for those attempting to foster instructional improvements via communities, where faculty can collaboratively share and learn about teaching practices and instructional improvements.
Uncover and leverage faculty members’ interests in diverse teaching-related topics
Participants indicated that faculty are busy and have autonomy in terms of deciding how to teach, which might be a barrier to engaging them in instructional improvement work (including via faculty communities). Given these considerations, it is perhaps of great importance that initiative leaders, designers, and administrators cater to faculty members’ teaching needs and interests, which our participants indicated are plentiful and diverse, when designing and implementing instructional improvement opportunities (as also noted in Bouwma-Gearhart, 2012b; Bouwma-Gearhart, Lenz, & Ivanovitch, 2019; Oleson & Hora, 2014). If faculty view learning communities as places where they can converse with others around teaching-related topics that are useful to their contexts and meet their interests, they might be more likely to engage. Additionally, STEM faculty might consider forming their own learning communities with others who are drawn to learning and discussing the same teaching topics.
Indeed, encouraging faculty to bring their teaching experiences and expertise to conversations can be important in helping them think about how to improve teaching. Specifically, scholars have pointed to the importance of helping STEM faculty realize a “dissatisfaction with the teaching and learning goals established for students, beliefs about students and how they learn, and beliefs about the effectiveness of instructional practices” (Gess- Newsome, Southerland, Johnson, & Woodbury, 2003, p. 762–763). Faculty might develop such awareness when they make explicit their teaching-related notions and broaden their knowledge of teaching through conversations with other educators. As we discuss below, it is important to elicit and respond to teaching-related experiences, beliefs, and interests with a sense of curiosity and non-judgement to help faculty comfortably and candidly share teaching knowledge.
Acknowledge that faculty may already be involved in opportunities where they engage with others around teaching-related topics
Our participants indicated faculty were involved in a diverse array of instructional improvement opportunities where they might engage in teaching-related conversations, including those within their units, in the institution, and outside of the institution. They also spoke of how the initiative contributed to the momentum of instructional improvement efforts at the institution, further suggesting that participants perceived many instructional improvements underway. One participant even indicated feeling exhausted per being involved in so many improvement opportunities and some participants expressed confusion about what improvement opportunities were part of this specific initiative. Given these findings, we assert that it is important for initiative leaders and designers, particularly those creating and fostering faculty communities, to consider synergizing with other teaching-related improvement efforts. For example, instructional improvement efforts might be coordinated so strategies target different populations of faculty (e.g., fixed-term, tenure-track, etc.) or different teaching foci (e.g., lower-division, upper-division, graduate, etc.).
Calling on initiative designers and implementers to operate with intentionality and knowledge of the institutional system during initiative design and implementation has also been suggested by previous researchers (Bouwma-Gearhart, Ivanovitch, Aster, & Bouwma, 2018; Bouwma-Gearhart & Collins, 2015; Henderson et al., 2011). Our findings specifically suggest that one part of the institutional system to consider is the larger landscape of initiatives and professional development efforts available, wherein faculty might already invest parts of their limited time in teaching-related conversations. Administrators, instructional improvement designers and leaders, and STEM faculty should consider exchanging knowledge of these opportunities towards guiding additional efforts.
Relatedly, participants talked about wanting more regulations or policies supporting quality teaching, such as making explicit the institution’s vision for instructional improvements. Explicit regulations or policies regarding teaching quality could help those creating and implementing instructional improvement initiatives focus efforts around organizational requirements. This would also help faculty see that instructional improvements are valued by the organization and perhaps increase motivation to engage in instructional improvements.
Create spaces where faculty can talk with community members about teaching-related topics
Many participants spoke about how engaging in teaching-related conversations helped them compare teaching practices and find teaching-related support. Additionally, many participants spoke about how they felt the initiative provided important opportunities for them to engage in a faculty community composed of members from across the STEM disciplines. This finding can be related to the decrease in network average path length and diameter, which suggests that faculty were more connected than before. Although we cannot directly link this finding back to the initiative, interview excerpts suggest the initiative was an important part of the STEM instructional improvement efforts that helped faculty meet and exchange teaching-related knowledge with community members across the institution. Our participants suggest that faculty want to have opportunities to connect with others about teaching-related topics and would be interested in engaging in these opportunities.
In fact, several faculty desired more initiative-related events and opportunities, with more units involved. The specific desire to talk with community members outside of one’s unit may be a big draw for faculty on the part of their engagement in multidisciplinary, initiative-fostered communities. Relatedly, research has noted that creating opportunities for faculty to engage with others around teaching-related topics may be particularly important for faculty who feel departmentally isolated in terms of their interest in teaching-related topics. Participating in faculty communities can supply faculty with “energy, enthusiasm, encouragement, and affirmation” (Kezar et al., 2017, p. 253) that they may not get in their units. This suggests that initiative leaders and designers consider ways to build, sustain, and grow interdisciplinary faculty communities where educators can meet with STEM faculty across the institution who are interested in collaboratively learning teaching-related topics.
Some participants also offered statements about how initiative-related communities had either contributed to their or others’ effective uptake of novel pedagogical practices towards improving student learning. These results mirror those found in Gehrke and Kezar (2016), who found that 70% of their study participants reported altering practices while involved in large-scale STEM communities. Engaging educators in faculty communities, where they might collaboratively learn instructional improvements, can be an effective way to improve postsecondary STEM education.
Also, as a few of our participants noted, engaging in teaching-related conversions could be an efficient way to learn about teaching, especially for busy faculty who do not have extra time to consult the literature. Marketing faculty communities as a way to efficiently learn about evidence-based instructional practices could be a useful way for initiative leaders, designers, and administrators to engage busy faculty in events. If faculty believe that communities can help them address their teaching needs and help them explore their teaching-related interests, they might be more inclined to participate.
Many participants’ discussion partners changed in 2014 and 2017, in terms of whether those partners were within the participants’ units or outside their units. Social network analysis, specifically diameter and average path length, showed that the networks changed in such a way that teaching-related information could travel through the community by ‘going through’ fewer people. This suggests that, as interested faculty participate in opportunities with other educators, the overall network of teaching-related discussions might increase in cohesiveness through decreases in diameter and average path length. In other words, with an overall shift of the network to conversations between units, teaching-related knowledge can be more expediently communicated across the institution.
Create spaces for sharing that are inclusive and safe, towards fostering faculty participation in teaching-related conversations
Our results also suggest that conversational opportunities for STEM faculty, where they might share and learn about teaching, must be inclusive and safe. This means any faculty member can air genuine teaching concerns to a respectful and helpful audience. Therefore, initiative leaders, designers, administrators, and STEM faculty constructing opportunities for teaching-related conversations should consider communicating explicit norms for sharing and reception. For example, one norm may be approaching others’ comments and experiences with curiosity, not judgment. This may help faculty feel more comfortable sharing genuine teaching-related experiences and knowledge.
Another way to help faculty feel comfortable is to explicitly acknowledge the difficulty of teaching as well the norms for pedagogical training and support provided to some STEM faculty throughout their graduate student years and employment. The reality that pedagogical training is varied among STEM faculty is one to handle delicately so as not to cause push-back that might impede teaching improvement efforts. Faculty members who perceive a lack of teaching skills and knowledge as a professional failing, or perceive others judging these as failings, may be less motivated to engage in teaching improvement efforts. Like others (Bouwma-Gearhart, 2012a), we suggest initiative leaders, designers, and administrators acknowledge and address this norm in teaching-related communities. If faculty know that teaching requires learning, is difficult, and that struggling is part of an educator’s growth, they might feel more comfortable admitting to and discussing teaching difficulties. Such explicit acknowledgments help serve as bases for safe professional development spaces for STEM faculty at institutions (Bouwma-Gearhart, 2012a) as well as STEM faculty engaged in large-scale reform efforts (Kezar et al., 2017).
Develop the administrative support that may be necessary to help foster and sustain opportunities for faculty to talk about teaching
Our participants suggested the importance of administrative endorsement of improvement efforts and teaching-related conversations. This suggests that getting buy-in from administrators, who have more powerful roles, is very important to foster and sustain instructional improvement opportunities for faculty to talk with others about teaching. This result echoes that found in previous studies, which have suggested the importance of engaging upper-level administrators in instructional improvement initiatives (Callahan, Pyke, Shadle, & Landrum, 2014; Gehrke & Kezar, 2016).
Specifically, administrators can help foster instructional improvement initiatives by offering support and recognition to STEM faculty working collaboratively to learn about teaching. This support might manifest as modifying environments and structures to allow (and encourage) time for faculty to engage in teaching-related conversations and teaching-related improvements. For example, administrators could explicitly clarify (e.g., include in position descriptions) that time participating in teaching-related conversations (e.g., departmental course meetings) is expected as part of faculty members’ duties. This would likely necessitate alleviating faculty time from other tasks, since our participants also lamented being too busy to spend time on teaching. Another example is unit administrators working with instructional improvement leaders and designers to create required pedagogical professional development opportunities for new faculty. Through such administrative support, STEM faculty might feel more inclined to participate in teaching-related discussions and consider instructional improvements.
Studying STEM faculty experiences in instructional improvement efforts: reflections on combining social network and interview analysis
We close our discussion with brief but critical thought about using social network and interview analysis to understand how STEM faculty engage in teaching-related conversations. Analysis of social networks illuminated how the teaching-related connections STEM faculty had with discussion partners created a larger network, and how this network’s cohesiveness changed over time. However, social network analysis did not illuminate STEM faculty members’ rationales for engaging in teaching-related conversations. To understand this aspect, we analyzed interviews with STEM faculty. We argue that this combination of methods provided a more robust, yet effort-intensive, picture of how STEM faculty engage in teaching-related conversations at an institution of higher education with an ongoing instructional improvement initiative. If we had limited our study to social network analysis, we likely would have observed changes in cohesiveness due to path length but would not have been able to interpret this change. Our interviews help uncover the context STEM faculty work in, showing a diverse community with variable motivations and opportunities to participate in teaching-related conversations. Conversely, if we had only used interview data, we may not have known the extent the network of discussion partners changed over time.
Participants suggested they wanted to engage in teaching-related conversations to compare teaching practices and find support in comfortable and safe conversations. Our study suggests that the initiative helped them do this, via creating spaces for an interdisciplinary community of faculty to come together to talk about teaching-related topics. While it may not have influenced all faculty members’ engagement in teaching-related conversations, those who participated in initiative-related events largely saw the initiative as very impactful towards adding value to STEM teaching and learning and helping community members meet others to consider and/or make teaching improvements. Furthermore, the network representing discussion partners (or, with whom faculty talked about teaching) grew more interconnected over the life of the initiative. This suggests that teaching-related knowledge can be more expediently distributed throughout the network. We suggest that combining social network analysis with interviews is a fruitful, albeit time-intensive method for the robust study of how STEM faculty engage in teaching-related conversations.